Skip to main content

Advertisement

Log in

Towards biological control of Spongospora subterranea f. sp. subterranea, the causal agent of powdery scab in potato

  • Review
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Powdery scab of potato, caused by the obligate biotrophic protozoan pathogen Spongospora subterranea f.sp. subterranea (Sss), is a major problem in potato growing areas throughout the world. It results in lesions (scabs) on the surface of the tubers which renders them unmarketable. In recent years there has been an increasing number of reports of the disease, many from new areas. Management of the disease has proved difficult and relies on the integrated application of a range of methods. Biocontrol is not currently used for the management of powdery scab although the results of preliminary studies have been encouraging. This review evaluates the potential for developing a biocontrol strategy for powdery scab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andrea Ramirez L, Maria Zuluaga C, Paola Gonzalez E, Alejandro Marin M, Gonzalo Morales J, Eduardo Nustez C, Miguel Cotes J (2013) Using lateral stem cuttings to evaluate the resistance of Solanum phureja genotypes to Spongospora subterranea F. Sp subterranea. Tropical Plant Pathology 38:303–312

    Article  Google Scholar 

  • Arif M, Torrance L, Reavy B (1995) Acquisition and transmission of potato mop-to furovirus by a culture of Spongospora subterranea f.sp. subterranea derived from a single cystosorus. Ann Appl Biol 126:493–503. doi:10.1111/j.1744-7348.1995.tb05384.x

    Article  Google Scholar 

  • Balendres MA, Tegg RS, Wilson CR (2016) Key events in pathogenesis of spongospora diseases in potato: a review. Australas Plant Pathol 45:1–12. doi:10.1007/s13313-016-0398-3

  • Birch PRJ, Bryan G, Fenton B, Gilroy EM, Hein I, Jones JT, Prashar A, Taylor MA, Torrance L, Toth IK (2012) Crops that feed the world 8: potato: are the trends of increased global production sustainable? Food Security 4:477–508

    Article  Google Scholar 

  • Blumenstein K, Albrectsen BR, Martin JA, Hultberg M, Sieber TN, Helander M, Witzell J (2015) Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. BioControl 60:655–667

    Article  Google Scholar 

  • Braithwaite M, Falloon RE, Genet RA, Wallace AR, Fletcher JD, Braam WF (1994) Control of powdery scab of potatoes with chemical seed tuber treatments. N Z J Crop Hortic Sci 22:121–128. doi:10.1080/01140671.1994.9513815

    Article  CAS  Google Scholar 

  • Brierley JL, Sullivan L, Wale SJ, Hilton AJ, Kiezebrink DT, Lees AK (2013) Relationship between Spongospora subterranea f.sp. subterranea soil inoculum level, host resistance and powdery scab on potato tubers in the field. Plant Pathol 62:413–420. doi:10.1111/j.1365-3059.2012.02649.x

    Article  Google Scholar 

  • Bulman SR, Kühn SF, Marshall JW, Schnepf E (2001) A phylogenetic analysis of the SSU rRNA from members of the Plasmodiophorida and Phagomyxida. Protist 152:43–51. doi:10.1078/1434-4610-00042

    Article  CAS  PubMed  Google Scholar 

  • Carnegie SF, Cameron AM, McCreath M (2010) Foliar symptoms caused by potato mop-top virus on potato plants during vegetative propagation in Scotland and their association with tuber yield, spraing and tuber infection. Potato Res 53:83–93. doi:10.1007/s11540-010-9153-2

    Article  Google Scholar 

  • Charron CS, Sams CE (1999) Inhibition of Pythium ultimum and Rhizoctonia solani by shredded leaves of brassica species. J Am Soc Hortic Sci 124:462–467

    CAS  Google Scholar 

  • De Cal A, Martinez-Treceño A, Salto T, López-Aranda JM, Melgarejo P (2005) Effect of chemical fumigation on soil fungal communities in Spanish strawberry nurseries. Appl Soil Ecol 28:47–56. doi:10.1016/j.apsoil.2004.06.005

    Article  Google Scholar 

  • Deberdt P, Mfegue CV, Tondje PR, Bon MC, Ducamp M, Hurard C, Begoude BAD, Ndoumbe-Nkeng M, Hebbar PK, Cilas C (2008) Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biol Control 44:149–159. doi:10.1016/j.biocontrol.2007.10.026

    Article  Google Scholar 

  • Devaux A, Kromann P, Ortiz O (2014) Potatoes for sustainable global food security. Potato Res 57:185–199. doi:10.1007/s11540-014-9265-1

    Article  Google Scholar 

  • Dobrowolski MP, Tommerup IC, Shearer BL, O'Brien PA (2003) Three clonal lineages of Phytophthora cinnamomi in Australia revealed by microsatellites. Phytopathology 93:695–704

    Article  CAS  PubMed  Google Scholar 

  • Falloon RE (2008) Control of powdery scab of potato: towards integrated disease management. Am J Potato Res 85:253–260. doi:10.1007/s12230-008-9047-x

    Article  Google Scholar 

  • Falloon RE, Wallace AR, Braithwaite M, Genet RA, Nott HM, Fletcher JD, Braam WF (1996) Assessment of seed tuber, in-furrow, and foliar chemical treatments for control of powdery scab (Spongospora subterranea f.sp. subterranea) of potato. N Z J Crop Hortic Sci 24:341–353

    Article  Google Scholar 

  • Falloon RE, Genet RA, Wallace AR, Butler RC (2003) Susceptibility of potato (Solanum tuberosum) cultivars to powdery scab (caused by Spongospora subterranea F. Sp. subterranea), and relationships between tuber and root infection. Australas Plant Pathol 32:377–385. doi:10.1071/AP03040

    Article  Google Scholar 

  • Falloon RE, Merz U, Butler RC, Curtin D, Lister RA, Thomas SM (2016) Root infection of potato by Spongospora subterranea: knowledge review and evidence for decreased plant productivity. Plant Pathol 65:422–434. doi:10.1111/ppa.12419

    Article  Google Scholar 

  • Gau RD, Merz U, Falloon RE, Brunner PC (2013) Global genetics and invasion history of the potato powdery scab pathogen, Spongospora subterranea f.sp subterranea. PLoS One 8:e67944. doi:10.1371/journal.pone.0067944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gau RD, Merz U, Falloon RE (2015) Infection risk potential of south American Spongospora subterranea f.sp subterranea root gall and tuber lesion inoculum on potato (Solanum tuberosum ssp tuberosum). Am J Potato Res 92:109–116. doi:10.1007/s12230-014-9419-3

    Article  CAS  Google Scholar 

  • Gossen BD, McDonald MR, Hwang SF, Strelkov SE, Peng G (2013) A comparison of clubroot development and management on canola and brassica vegetables. Can J Plant Pathol 35:175–191

    Article  Google Scholar 

  • Gyenis L, Anderson NA, Ostry ME (2003) Biological control of Septoria leaf spot disease of hybrid poplar in the field. Plant Dis 87:809–813

    Article  Google Scholar 

  • Hanada RE, Pomella AWV, Soberanis W, Loguercio LL, Pereira JO (2009) Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biol Control 50:143–149. doi:10.1016/j.biocontrol.2009.04.005

    Article  Google Scholar 

  • Harrison JG, Searle RJ, Williams NA (1997) Powdery scab disease of potato - a review. Plant Pathol 46:1–25. doi:10.1046/j.1365-3059.1997.d01-214.x

    Article  Google Scholar 

  • Hernandez Maldonado ML, Falloon RE, Butler RC, Conner AJ, Bulman SR (2013) Spongospora subterranea Root infection assessed in two potato cultivars differing in susceptibility to tuber powdery scab. Plant Pathol 62:1089–1096. doi:10.1111/ppa.12015

    Article  CAS  Google Scholar 

  • Hidalgo E, Bateman R, Krauss U, ten Hoopen M, Martinez A (2003) A field investigation into delivery systems for agents to control Moniliophthora roreri. Eur J Plant Pathol 109:953–961. doi:10.1023/B:EJPP.0000003746.16934.e2

    Article  Google Scholar 

  • Hughes I (1980) Powdery scab Spongospora subterranea of potatoes in Queensland: occurrence, cultivar susceptibility, time of infection, effect of soil pH, chemical control and temperature relations. Australian Journal of Experimental Agriculture and Animal Husbandry 20:625–632. doi:10.1071/EA9800625

    Article  Google Scholar 

  • Hutchison LJ, Kawchuk LM (1998) Spongospora subterranea f.sp. subterranea. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie 20:118–119

    Article  Google Scholar 

  • Jan AT, Azam M, Ali A, Haq QMR (2011) Novel approaches of beneficial Pseudomonas in mitigation of plant diseases - an appraisal. J Plant Interact 6:195–205. doi:10.1080/17429145.2010.541944

    Article  Google Scholar 

  • Jang MH, Ahn SY, Kim SH, Noh JH, Yun HK (2011) Evaluation of grapevine varietal resistance to anthracnose through treating culture filtrates from Elsinoe ampelina. Horticulture Environment and Biotechnology 52:152–157

    Article  Google Scholar 

  • Johnson DA, Cummings TF (2015) Effect of powdery scab root galls on yield of potato. Plant Dis 99:1396–1403. doi:10.1094/pdis-11-14-1170-re

    Article  Google Scholar 

  • Kalischuk M, Lynn J, Kawchuk L (2016) First report of potato mop-top virus infecting potatoes in Alberta. Plant Dis 100:2544–2544. doi:10.1094/PDIS-06-16-0902-PDN

    Article  Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • Kirk HG (2008) Mop-top virus, relationship to its vector. Am J Potato Res 85:261–265. doi:10.1007/s12230-008-9021-7

    Article  Google Scholar 

  • Kirkham R (1986) Screening for resistance to powdery scab disease of potatoes. Aust J Exp Agric 26:245–247. doi:10.1071/EA9860245

    Article  Google Scholar 

  • Lahlali R, McGregor L, Song T, Gossen BD, Narisawa K, Peng G (2014) Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis. PLoS One 9:e94144. doi:10.1371/journal.pone.0094144

    Article  PubMed  PubMed Central  Google Scholar 

  • Landa BB, Navas-Cortes JA, Hervas A, Jimenez-Diaz RM (2001) Influence of temperature and inoculum density of Fusarium oxysporum f. Sp ciceris on suppression of fusarium wilt of chickpea by rhizosphere bacteria. Phytopathology 91:807–816. doi:10.1094/phyto.2001.91.8.807

    Article  CAS  PubMed  Google Scholar 

  • Landa BB, Navas-Cortés JA, Jiménez-Díaz RM (2004) Influence of temperature on plant–rhizobacteria interactions related to biocontrol potential for suppression of fusarium wilt of chickpea. Plant Pathol 53:341–352. doi:10.1111/j.0032-0862.2004.01008.x

    Article  Google Scholar 

  • Larkin RP, Griffin TS (2007) Control of soilborne potato diseases using brassica green manures. Crop Prot 26:1067–1077. doi:10.1016/j.cropro.2006.10.004

    Article  Google Scholar 

  • Larkin RP, Honeycutt CW (2006) Effects of different 3-year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology 96:68–79. doi:10.1094/PHYTO-96-0068

    Article  PubMed  Google Scholar 

  • Lee SO, Choi GJ, Choi YH, Jang KS, Park D-J, Kim C-J, Kim J-C (2008) Isolation and characterization of endophytic actinomycetes from chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18:1741–1746. doi:10.4014/jmb.0800.108

    CAS  PubMed  Google Scholar 

  • Macalady JL, Fuller ME, Scow KM (1998) Effects of metam sodium fumigation on soil microbial activity and community structure. J Environ Qual 27:54–63

    Article  CAS  Google Scholar 

  • McLean KL, Swaminathan J, Frampton CM, Hunt JS, Ridgway HJ, Stewart A (2005) Effect of formulation on the rhizosphere competence and biocontrol ability of Trichoderma atroviride C52. Plant Pathol 54:212–218. doi:10.1111/j.1365-3059.2005.01158.x

    Article  Google Scholar 

  • Merz U (2008) Powdery scab of potato - occurrence, life cycle and epidemiology. Am J Potato Res 85:241–246. doi:10.1007/s12230-008-9019-1

    Article  Google Scholar 

  • Merz U, Martinez V, Schwarzel R (2004) The potential for the rapid screening of potato cultivars (Solanum tuberosum) for resistance to powdery scab (Spongospora subterranea) using a laboratory bioassay. Eur J Plant Pathol 110:71–77. doi:10.1023/B:EJPP.0000010123.21255.d1

    Article  Google Scholar 

  • Mishra DS, Prajapati CR, Gupta AK, Sharma SD (2012) Relative bio-efficacy and shelf-life of mycelial fragments, conidia and chlamydospores of Trichoderma harzianum. Vegetos 25:225–232

    Google Scholar 

  • Muthukumar A, Eswaran A, Sangeetha G (2011) Induction of systemic resistance by mixtures of fungal and endophytic bacterial isolates against Pythium aphanidermatum. Acta Physiol Plant 33:1933-1944

  • Nakayama T, Sayama M (2013) Suppression of potato powdery scab caused by Spongospora subterranea using an antagonistic fungus Aspergillus versicolor isolated from potato roots Conference poster. Proceedings of the ninth symposium of the international working group on plant viruses with fungal vectors, Obihiro, Hokkaido, Japan, 19–22 August 2013:53–54

  • Narisawa K, Tokumasu S, Hashiba T (1998) Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol 47:206–210. doi:10.1046/j.1365-3059.1998.00225.x

    Article  Google Scholar 

  • Narisawa K, Shimura M, Usuki F, Fukuhara S, Hashiba T (2005) Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira. Plant Dis 89:285–290. doi:10.1094/pd-89-0285

    Article  Google Scholar 

  • Neuhauser S, Kirchmair M, Bulman S, Bass D (2014) Cross-kingdom host shifts of phytomyxid parasites. BMC Evol Biol 14:1–13. doi:10.1186/1471-2148-14-33

    Article  Google Scholar 

  • Newman KL, Chatterjee S, Ho KA, Lindow SE (2008) Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Mol Plant-Microbe Interact 21:326–334. doi:10.1094/mpmi-21-3-0326

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SL, Larsen J (2004) Two Trichoderma harzianum-based bio-control agents reduce tomato root infection with Spongospora subterranea (Wallr.) Lagerh., f. Sp subterranea, the vector of potato mop-top virus. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-Journal of Plant Diseases and Protection 111:145–150

    Article  Google Scholar 

  • Nitzan N, Cummings TF, Johnson DA, Miller JS, Batchelor DL, Olsen C, Quick RA, Brown CR (2008) Resistance to root galling caused by the powdery scab pathogen Spongospora subterranea in potato. Plant Dis 92:1643–1649. doi:10.1094/PDIS-92-12-1643

    Article  Google Scholar 

  • Ownley BH, Duffy BK, Weller DM (2003) Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. Appl Environ Microbiol 69:3333–3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng G, McGregor L, Lahlali R, Gossen BD, Hwang SF, Adhikari KK, Strelkov SE, McDonald MR (2011) Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathol 60:566–574. doi:10.1111/j.1365-3059.2010.02400.x

    Article  Google Scholar 

  • Peng G, Lahlali R, Hwang S-F, Pageau D, Hynes RK, McDonald MR, Gossen BD, Strelkov SE (2014) Crop rotation, cultivar resistance, and fungicides/biofungicides for managing clubroot (Plasmodiophora brassicae) on canola. Can J Plant Pathol 36:99–112. doi:10.1080/07060661.2013.860398

    Article  Google Scholar 

  • Qu XS, Christ BJ (2004) Genetic variation and phylogeny of Spongospora subterranea f.sp subterranea based on ribosomal DNA sequence analysis. Am J Potato Res 81:385–394

    Article  CAS  Google Scholar 

  • Qu X, Christ BJ (2006a) The host range of Spongospora subterranea F. Sp subterranea in the United States. Am J Potato Res 83:343–347

    Article  Google Scholar 

  • Qu XS, Christ BJ (2006b) Single cystosorus isolate production and restriction fragment length polymorphism characterization of the obligate biotroph Spongospora subterranea F. Sp subterranea. Phytopathology 96:1157–1163. doi:10.1094/phyto-96-1157

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers J, Vlami M, de Souza J (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547. doi:10.1023/A:1020501420831

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. doi:10.1111/j.1574-6976.2010.00221.x

    Article  CAS  PubMed  Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164. doi:10.1094/PHYTO.1998.88.11.1158

    Article  CAS  PubMed  Google Scholar 

  • Roberts DP, Lohrke SM, Meyer SLF, Buyer JS, Bowers JH, Baker CJ, Li W, de Souza JT, Lewis JA, Chung S (2005) Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot 24:141–155

    Article  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MD, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Tech 22:855–872

    Article  Google Scholar 

  • Saravanan T, Muthusamy M, Marimuthu T (2004) Effect of Pseudomonas fluorescens on fusarium wilt pathogen in banana rhizosphere. J Biol Sci 4:192–198

    Article  Google Scholar 

  • Sarma M, Kumar V, Saharan K, Srivastava R, Sharma AK, Prakash A, Sahai V, Bisaria VS (2011) Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J Appl Microbiol 111:456–466

    Article  CAS  PubMed  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271. doi:10.1094/PHYTO.2004.94.11.1267

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CS, Agostini F, Leifert C, Killham K, Mullins CE (2004) Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis. Phytopathology 94:351–363. doi:10.1094/PHYTO.2004.94.4.351

    Article  CAS  PubMed  Google Scholar 

  • Shah FA, Falloon RE, Butler RC, Lister RA (2012) Low amounts of Spongospora subterranea sporosorus inoculum cause severe powdery scab, root galling and reduced water use in potato (Solanum tuberosum). Australas Plant Pathol 41:219–228. doi:10.1007/s13313-011-0110-6

    Article  Google Scholar 

  • Shah FA, Falloon RE, Butler RC, Lister RA, Thomas SM, Curtin D (2014) Agronomic factors affect powdery scab of potato and amounts of Spongospora subterranea DNA in soil. Australas Plant Pathol 43:679–689. doi:10.1007/s13313-014-0317-4

    Article  CAS  Google Scholar 

  • Slininger PJ, Schisler DA, Kleinkopf GE (2001) Combinations of dry rot antagonistic bacteria enhance biological control consistency in stored potatoes. Phytopathology 91:S83

    Google Scholar 

  • Slininger PJ, Schisler DA, Eirjcsson LD, Brandt TL, Frazier MJ, Woodell LK, Olsen NL, Kleinkopf GE (2007) Biological control of post-harvest late blight of potatoes. Biocontrol Sci Tech 17:647–663. doi:10.1080/09583150701408881

    Article  Google Scholar 

  • Sparrow LA, Rettke M, Corkrey SR (2015) Eight years of annual monitoring of DNA of soil-borne potato pathogens in farm soils in south eastern Australia. Australas Plant Pathol 44:191–203. doi:10.1007/s13313-014-0340-5

    Article  CAS  Google Scholar 

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2011) Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101:113–123

    Article  CAS  PubMed  Google Scholar 

  • Taylor PA, Flett SP, de Boer RF, Marshall DR (1986) Effect of irrigation regimes on powdery scab disease and yield of potatoes. Aust J Exp Agric 26:745–750

    Article  Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2012) Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biol Control 61:155–159. doi:10.1016/j.biocontrol.2012.01.010

    Article  Google Scholar 

  • Tommerup IC, Ingram DS (1971) The life cycle of Plasmodiophora brassicae woron. In brassica tissue cultures and in intact roots. New Phytol 70:327–332

    Article  Google Scholar 

  • van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L, Ferrieri R, Rogers A, Wu X, Zhu W, Weyens N, Vangronsveld J, Newman L (2009) Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28:346–358

    Article  Google Scholar 

  • Vemmer M, Patel AV (2013) Review of encapsulation methods suitable for microbial biological control agents. Biol Control 67:380–389. doi:10.1016/j.biocontrol.2013.09.003

    Article  CAS  Google Scholar 

  • Wang S, Wu H, Zhan J, Xia Y, Gao S, Wang W, Xue P, Gao X (2011) The role of synergistic action and molecular mechanism in the effect of genetically engineered strain Bacillus subtilis OKBHF in enhancing tomato growth and cucumber mosaic virus resistance. BioControl 56:113–121

    Article  CAS  Google Scholar 

  • Wang J, Huang Y, Lin S, Liu F, Song Q, Peng Y, Zhao L (2012) A strain of Streptomyces griseoruber isolated from rhizospheric soil of Chinese cabbage as antagonist to Plasmodiophora brassicae. Ann Microbiol 62:247–253. doi:10.1007/s13213-011-0253-2

    Article  CAS  Google Scholar 

  • Wilson CR (2016) Plant pathogens – the great thieves of vegetable value. Acta Horticult 1123. doi:10.17660/ActaHortic.2016.1123.2

  • Xie H, Yan D, Mao L, Wang Q, Li Y, Ouyang C, Guo M, Cao A (2015) Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community. PLoS One 10:e0117980

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou LH, Zhang LH, He YQ, Liu F, Li M, Wang ZS, Ji GH (2014) Isolation and characterization of bacterial isolates for biological control of clubroot on Chinese cabbage. Eur J Plant Pathol 140:159–168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Prof. Richard Falloon (Lincoln NZ) for helpful comments on an early version of the manuscript. Thanks to Prof. U Merz (Zurich) for permission to include Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. O’Brien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, P.A., Milroy, S.P. Towards biological control of Spongospora subterranea f. sp. subterranea, the causal agent of powdery scab in potato. Australasian Plant Pathol. 46, 1–10 (2017). https://doi.org/10.1007/s13313-017-0466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-017-0466-3

Keywords

Navigation