Skip to main content
Log in

Analysis of Material Flow and Heat Transfer in Reverse Dual Rotation Friction Stir Welding: A Review

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

This review paper provides an over view of the modelling approach of reverse dual rotation friction stir welding (RDR-FSW) by interpreting governing mathematical equations and finite element formulation of heat transfer and material flow for different material like Mild steel and Aluminum alloy with the help of DEFORM-3D and ANSYS Fluent software. RDR-FSW is a novel variant of conventional FSW process. The key feature is that the tool pin and the assisted shoulder rotates reversely and independently during the process, thus, it has great potential to improve the weld quality and lower the welding loads through adjusting the rotating speeds of the tool pin and the assisted shoulder independently. This review concludes with recommendation for future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ayer, R., Jin, H. W., Mueller, R. R., Ling, S., & Ford, S. (2005). Interface structure in a Fe–Ni friction stir welded joint. Scripta Materialia, 53, 1383–1387.

    Article  Google Scholar 

  • Brandes, E. A., & Brook, G. B. (1999). Smithells metals, reference book (7th ed.). Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids (2nd ed., pp. 87–90). Oxford: Clarendon Press.

    Google Scholar 

  • Chao, Y. J., Qi, X., & Tang, W. (2003). Heat transfer in friction stir welding—Experimental and numerical studies. Journal of Manufacturing Science and Engineering, 125(1), 138–145.

    Article  Google Scholar 

  • Kozlowski, P. F., Thomas, B. G., Azzi, J. A., & Wang, H. (1992). Simple constitutive equations for steel at high temperature. Metallurgical and Materials Transactions A, 23(3), 903–918.

    Article  Google Scholar 

  • Li, S. (2013). Numerical analysis of heat transfer and material flow in reverse dual-rotation friction stir welding. In Proceedings of the 1st international joint symposium on joining and welding (pp. 225–231).

  • Lienert, J., Stellwag, W. L., & Grimmett, B. B. (2003). Friction stir welding studies on mild steel. Welding Journal, 82, 1–9.

    Google Scholar 

  • Mehdi, H., Gaurav, S., Kumar, T., & Sharma, P. (2017). Mechanical characterization of SA-508Gr3 and SS-304L steel weldments. International Journal of Advanced Production and Industrial Engineering, 2(1), 41–46.

    Google Scholar 

  • Mehdi, H., & Mishra, R. S. (2016). Mechanical properties and microstructure studies in Friction Stir Welding (FSW) joints of dissimilar alloy—A review. Journal of Achievements in Materials and Manufacturing Engineering, 77(1), 31–40.

    Article  Google Scholar 

  • Mehdi, H., & Mishra, R. S. (2017a). Mechanical and microstructure characterization of friction stir welding for dissimilar alloy—A review. International Journal of Research in Engineering and Innovation, 1(5), 57–67.

    Google Scholar 

  • Mehdi, H., & Mishra, R. S. (2017b). Influences of process parameter and microstructural studies in friction stir welding of different alloys: A review. International Journal of Advanced Production and Industrial Engineering, SI-MM, 509, 55–62.

    Google Scholar 

  • Micallef, D., Camilleri, D., Toumpis, A., Galloway, A., & Larbi, A. (2016). Local heat generation and material flow in friction stir welding of mild steel assemblies. Journal of Materials Design and Applications, 230(2), 1–17.

    Google Scholar 

  • Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering R, 50, 1–78.

    Article  Google Scholar 

  • Nandan, R., DebRoy, T., & Bhadeshia, H. K. D. H. (2008a). Recent advances in friction stir welding-process, weldment structure and properties. Progress in Materials Science, 53, 980–1023.

    Article  Google Scholar 

  • Nandan, R., Lienert, T. J., & DebRoy, T. (2008b). Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4Valloy. International Journal of Material Research, 99, 434–444.

    Article  Google Scholar 

  • Nandan, R., Roy, G. G., & DebRoy, T. (2006). Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metal Mater Trans A, 37(4), 1247–1259.

    Article  Google Scholar 

  • Nandan, R., Roy, G. G., Lienert, T. J., & Debroy, T. (2007). Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Materialia, 55, 883–895.

    Article  Google Scholar 

  • Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Washington: Hemisphere.

    MATH  Google Scholar 

  • Rajesh, S. R., Sur, B. H., Heung, K., & Seon, B. H. (2007). Analysis of complex heat flow phenomena with friction stir welding using 3D-analytical model. Advanced Materials Research, 15, 339–344.

    Google Scholar 

  • Saini, M., Arora, N., Pandey, C., & Mehdi, H. (2014a). Mechanical properties of bimetallic weld joint between SA 516 grade 65 carbon steel and SS 304 L for steam generator application. International Journal of Research in Engineering and Technology, 3(7), 39–42.

    Article  Google Scholar 

  • Saini, M., Arora, N., Pandey, C., & Mehdi, H. (2014b). Preliminary studies on thermal cycling of reactor pressure vessel steel. International Journal of Mechanical Engineering, 4(2), 51–58.

    Google Scholar 

  • Schmidt, H., Dickerson, T. L., & Hattel, J. (2006). Material flow in butt friction stir welds in AA2024-T3. Acta Materialia, 54, 1199–1209.

    Article  Google Scholar 

  • Schuhmann, R. (1952). Engineering principles adhesion. In Publication Metallurgical engineering Reinhardt Schuhmann, Jr, Cambridge, Mass. Addison-Wesley press. Addison-Wesley Press, Vol. 67(15), p. 416.

  • Sheppard, T., & Wright, D. S. (2013). Constitutive equations for use in prediction of flow stress during extrusion of aluminium alloys. Material Science and Technology, 6, 203–209.

    Google Scholar 

  • Shi, L., Wu, C. S., & Liu, H. J. (2014). Material flow and heat transfer in reverse dual-rotation friction stir welding. Journal of Materials Engineering and Performance, 23(8), 2918–2929.

    Article  Google Scholar 

  • Shi, L., Wu, C. S., & Liu, H. J. (2015). Analysis of heat transfer and material flow in reverse dual-rotation friction stir welding. Welding in the world, 55(5), 629–638.

    Article  Google Scholar 

  • Thomas, W. M., Norris, I. M., Staines, D. G., & Watts, E. R. (2005) Friction stir welding—Process developments and variant techniques. The SME Summit Oconomowoc, Milwaukee, USA (pp. 1–21).

  • Zhang, W., Roy, G. G., Elmer, J. W., & DebRoy, T. (2003). Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel. Journal of Applied Physics, 93, 3022–3033.

    Article  Google Scholar 

  • Zhang, Z., Xiao, B. L., & Ma, Z. Y. (2014). Hardness recovery mechanism in the heat-affected zone during long-term natural aging and its influence on the mechanical properties and fracture behavior of friction stir welded 2024Al–T351 joints. Acta Materialia, 73, 227–239.

    Article  Google Scholar 

  • Zhu, X. K., & Chao, Y. J. (2004). Numerical Simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. Journal of Material Process and Technology, 146, 263–272.

    Article  Google Scholar 

  • Zienkiewicz, O. C., & Taylor, R. L. (1996). A finite point method in computational mechanics. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering, 39, 3839–3866.

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmer, S., Langlois, L., & Laye, J. (2009). Experimental investigation of the influence of the FSW plunge processing parameters on the maximum generated force and torque. International Journal of Advanced Manufacturing Technology, 47, 201–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husain Mehdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdi, H., Mishra, R.S. Analysis of Material Flow and Heat Transfer in Reverse Dual Rotation Friction Stir Welding: A Review. Int J Steel Struct 19, 422–434 (2019). https://doi.org/10.1007/s13296-018-0131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0131-x

Keywords

Navigation