Skip to main content

Advertisement

Log in

CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy

  • Review
  • Published:
Tumor Biology

Abstract

CSE1L (chromosome segregation 1-like protein), also named as CAS (cellular apoptosis susceptibility protein), is highly expressed in most cancer types. CSE1L/CAS is a multiple functional protein that plays roles in apoptosis, cell survival, chromosome assembly, nucleocytoplasmic transport, microvesicle formation, and cancer metastasis; some of the functions are explicitly correlated. CSE1L is also a cancer serum biomarker. The phosphorylation of CAS is regulated by the extracellular signal-regulated kinase (ERK). The RAS/RAF/MAPK/ERK signaling pathways are the essential targets of most targeted cancer drugs, thus serum phosphorylated CSE1L may be a potential biomarker for monitoring drug resistance in targeted therapy. CSE1L can regulate Ras-induced ERK phosphorylation. CSE1L also regulates the expression and phosphorylation of CREB (cAMP response element binding protein) and MITF (microphthalmia-associated transcription factor) and is thus involved in the melanogenesis and progression of melanoma. CAS is an exosome/microvesicle membrane protein. Tumor cells consistently secrete microvesicles and tumor-derived microvesicles may be accumulated around tumors. Therefore, microvesicle membrane CSE1L may be a potential target for the development of high-efficacy antibody-drug conjugates (ADCs) for cancer therapy. This review will focus on CSE1L expression in cancers, its relationship to Ras/ERK and cAMP/PKA signaling pathways in melanoma development, its potential for the development of ADCs and tumor imaging reagents, and secretory phosphorylated CSE1L for monitoring the emergence of drug resistance in targeted cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinkmann U, Brinkmann E, Pastan I. Expression cloning of cDNAs that render cancer cells resistant to Pseudomonas and diphtheria toxin and immunotoxins. Mol Med. 1995;1:206–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bera TK, Bera J, Brinkmann U, Tessarollo L, Pastan I. Cse1l is essential for early embryonic growth and development. Mol Cell Biol. 2001;21:7020–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kutay U, Bischoff FR, Kostka S, Kraft R, Görlich D. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell. 1997;90:1061–71.

    Article  CAS  PubMed  Google Scholar 

  4. Liao CF, Lin SH, Chen HC, Tai CJ, Chang CC, Li LT, Yeh CM, Yeh KT, Chen YC, Hsu TH, Shen SC, Lee WR, Chiou JF, Luo SF, Jiang MC. CSE1L, a novel microvesicle membrane protein, mediates Ras-triggered microvesicle generation and metastasis of tumor cells. Mol Med. 2012;18:1269–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu R, Greening DW, Rai A, Ji H, Simpson RJ. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods. 2015;87:11–25.

    Article  CAS  PubMed  Google Scholar 

  6. Scherf U, Pastan I, Willingham MC, Brinkmann U. The human CAS protein which is homologous to the CSE1 yeast chromosome segregation gene product is associated with microtubules and mitotic spindle. Proc Natl Acad Sci U S A. 1996;93:2670–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tai CJ, Hsu CH, Shen SC, Lee WR, Jiang MC. Cellular apoptosis susceptibility (CSE1L/CAS) protein in cancer metastasis and chemotherapeutic drug-induced apoptosis. J Exp Clin Cancer Res. 2010;29:110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tsao TY, Tsai CS, Tung JN, Chen SL, Yue CH, Liao CF, Wang CC, Jiang MC. Function of CSE1L/CAS in the secretion of HT-29 human colorectal cells and its expression in human colon. Mol Cell Biochem. 2009;327:163–70.

    Article  CAS  PubMed  Google Scholar 

  9. Tai CJ, Chang CC, Shen SC, Lee WR, Jiang MC. Serum cellular apoptosis susceptibility (SCE1L/CAS) protein for cancer diagnosis. JECM. 2011;3:104–7.

    CAS  Google Scholar 

  10. Tung MC, Tsai CS, Tung JN, Tsao TY, Chen HC, Kun-Tu Y, Liao CF, Jiang MC. Higher prevalence of secretory CSE1L/CAS in sera of patients with metastatic cancer. Cancer Epidemiol Biomark Prev. 2009;18:1570–7.

    Article  CAS  Google Scholar 

  11. Tsai CS, Chen HC, Tung JN, Tsou SS, Tsao TY, Liao CF, Chen YC, Yeh CY, Yeh KT, Jiang MC. Serum cellular apoptosis susceptibility protein is a potential prognostic marker for metastatic colorectal cancer. Am J Pathol. 2010;176:1619–28.

    Article  CAS  Google Scholar 

  12. Tung JN, Tsao TY, Chen SL, Tai CJ, Shen SC, Cheng YW, Jiang MC. Presence of secretory cellular apoptosis susceptibility protein in cerebrospinal fluids of patients with intracerebral hemorrhage caused by stroke and neurotrauma. Neuro Endocrinol Lett. 2010;31:390–8.

    CAS  PubMed  Google Scholar 

  13. Tai CJ, Liao CF, Su TC, Shen KH, Chang CC, Lin SH, Yeh CM, Shen SC, Lee WR, Chiou JF, Lin CH, Chen YC, Shih HY, Yeh KT, Jiang MC. Presence of CSE1L protein in urine of patients with urinary bladder urothelial carcinomas. Int J Biol Markers. 2012;27:e280–4.

    Article  CAS  PubMed  Google Scholar 

  14. Brinkmann U, Brinkmann E, Gallo M, Pastan I. Cloning and characterization of a cellular apoptosis susceptibility gene, the human homologue to the yeast chromosome segregation gene CSE1. Proc Natl Acad Sci U S A. 1995;92:10427–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brinkmann U, Gallo M, Polymeropoulos MH, Pastan I. The human CAS (cellular apoptosis susceptibility) gene mapping on chromosome 20q13 is amplified in BT474 breast cancer cells and part of aberrant chromosomes in breast and colon cancer cell lines. Genome Res. 1996;6:187–94.

    Article  CAS  PubMed  Google Scholar 

  16. Lee WR, Shen SC, Shih YH, Chou CL, Tseng JT, Chin SY, Liu KH, Chen YC, Jiang MC. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lee WR, Shen SC, Wu PR, Chou CL, Shih YH, Yeh CM, Yeh K, Jiang MC. CSE1L links cAMP/PKA and Ras/ERK pathways and regulates the expressions and phosphorylations of ERK1/2, CREB, and MITF in melanoma cells. Mol Carcinog. 2015. doi:10.1002/mc.22407.

    Google Scholar 

  18. Caivano A, Laurenzana I, De Luca L, La Rocca F, Simeon V, Trino S, D’Auria F, Traficante A, Maietti M, Izzo T, D’Arena G, Mansueto G, Pietrantuono G, Laurenti L, Musto P, Del Vecchio L. High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders. Tumour Biol. 2015;36:9739–52.

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Li H, Zhou Y, Jie S. Peripheral blood microvesicles are potential biomarkers for hepatocellular carcinoma. Cancer Biomark. 2013;13:351–7.

    CAS  PubMed  Google Scholar 

  20. Franzen CA, Blackwell RH, Foreman KE, Kuo PC, Flanigan RC, Gupta GN. Urinary exosomes: the potential for biomarker utility, intercellular signaling and therapeutics in urological malignancy. J Urol. 2015. doi:10.1016/j.juro.2015.08.115.

    PubMed  Google Scholar 

  21. Chistiakov DA, Chekhonin VP. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol. 2014;35:8425–38.

    Article  CAS  PubMed  Google Scholar 

  22. Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg. PLoS One. 2010;5:e11469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mizutani K, Terazawa R, Kameyama K, Kato T, Horie K, Tsuchiya T, Seike K, Ehara H, Fujita Y, Kawakami K, Ito M, Deguchi T. Isolation of prostate cancer-related exosomes. Anticancer Res. 2014;34:3419–23.

    CAS  PubMed  Google Scholar 

  24. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19:43–51.

    Article  CAS  PubMed  Google Scholar 

  25. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  CAS  PubMed  Google Scholar 

  26. Giusti I, D’Ascenzo S, Millimaggi D, Taraboletti G, Carta G, Franceschini N, Pavan A, Dolo V. Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles. Neoplasia. 2008;10:481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev. 2006;20:1–26.

    Article  PubMed  Google Scholar 

  28. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006;20:1487–95.

    Article  CAS  PubMed  Google Scholar 

  29. Castellana D, Toti F, Freyssinet JM. Membrane microvesicles: macromessengers in cancer disease and progression. Thromb Res. 2010;125:S84–8.

    Article  PubMed  Google Scholar 

  30. Jansa R, Sustar V, Frank M, Susanj P, Bester J, Mancek-Keber M, Krzan M, Iglic A. Number of microvesicles in peripheral blood and ability of plasma to induce adhesion between phospholipid membranes in 19 patients with gastrointestinal diseases. Blood Cells Mol Dis. 2008;41:124–32.

    Article  CAS  PubMed  Google Scholar 

  31. Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA. Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res. 2004;64:7045–9.

    Article  CAS  PubMed  Google Scholar 

  32. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry Jr WT, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci U S A. 1994;91:2156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bigner SH, Mark J, Friedman HS, Biegel JA, Bigner DD. Structural chromosomal abnormalities in human medulloblastoma. Cancer Genet Cytogenet. 1988;30:91–101.

    Article  CAS  PubMed  Google Scholar 

  35. Palmedo G, Fischer J, Kovacs G. Duplications of DNA sequences between loci D20S478 and D20S206 at 20q11.2 and between loci D20S902 and D20S480 at 20q13.2 mark new tumor genes in papillary renal cell carcinoma. Lab Investig. 1999;79:311–6.

    CAS  PubMed  Google Scholar 

  36. Nishizaki T, Ozaki S, Harada K, Ito H, Arai H, Beppu T, Sasaki K. Investigation of genetic alterations associated with the grade of astrocytic tumor by comparative genomic hybridization. Genes Chromosomes Cancer. 1998;21:340–6.

    Article  CAS  PubMed  Google Scholar 

  37. Sonoda G, Palazzo J, du Manoir S, Godwin AK, Feder M, Yakushiji M, Testa JR. Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Genes Chromosomes Cancer. 1997;20:320–8.

    Article  CAS  PubMed  Google Scholar 

  38. Tada K, Oka M, Hayashi H, Tangoku A, Oga A, Sasaki K. Cytogenetic analysis of esophageal squamous cell carcinoma cell lines by comparative genomic hybridization: relationship of cytogenetic aberrations to in vitro cell growth. Cancer Genet Cytogenet. 2000;117:108–12.

    Article  CAS  PubMed  Google Scholar 

  39. Aust DE, Muders M, Köhler A, Schmidt M, Diebold J, Müller C, Löhrs U, Waldman FM, Baretton GB. Prognostic relevance of 20q13 gains in sporadic colorectal cancers: a FISH analysis. Scand J Gastroenterol. 2004;39:766–72.

    Article  CAS  PubMed  Google Scholar 

  40. Stubbs AP, Abel PD, Golding M, Bhangal G, Wang Q, Waxman J, Stamp GW, Lalani EN. Differentially expressed genes in hormone refractory prostate cancer: association with chromosomal regions involved with genetic aberrations. Am J Pathol. 1999;154:1335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Balázs M, Adám Z, Treszl A, Bégány A, Hunyadi J, Adány R. Chromosomal imbalances in primary and metastatic melanomas revealed by comparative genomic hybridization. Cytometry. 2001;46:222–32.

    Article  PubMed  Google Scholar 

  42. Wong MP, Fung LF, Wang E, Chow WS, Chiu SW, Lam WK, Ho KK, Ma ES, Wan TS, Chung LP. Chromosomal aberrations of primary lung adenocarcinomas in nonsmokers. Cancer. 2003;97:1263–70.

    Article  PubMed  Google Scholar 

  43. Wu CW, Chen GD, Fann CS, Lee AF, Chi CW, Liu JM, Weier U, Chen JY. Clinical implications of chromosomal abnormalities in gastric adenocarcinomas. Genes Chromosomes Cancer. 2002;35:219–31.

    Article  CAS  PubMed  Google Scholar 

  44. Mao X, Lillington D, Child F, Russell-Jones R, Young B, Whittaker S. Comparative genomic hybridization analysis of primary cutaneous B-cell lymphomas: identification of common genomic alterations in disease pathogenesis. Genes Chromosomes Cancer. 2002;35:144–55.

    Article  CAS  PubMed  Google Scholar 

  45. Yamamoto Y, Matsuyama H, Furuya T, Oga A, Yoshihiro S, Okuda M, Kawauchi S, Sasaki K, Naito K. Centrosome hyperamplification predicts progression and tumor recurrence in bladder cancer. Clin Cancer Res. 2004;10:6449–55.

    Article  CAS  PubMed  Google Scholar 

  46. Holzmann K, Kohlhammer H, Schwaenen C, Wessendorf S, Kestler HA, Schwoerer A, Rau B, Radlwimmer B, Döhner H, Lichter P, Gress T, Bentz M. Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res. 2004;64:4428–33.

    Article  CAS  PubMed  Google Scholar 

  47. Lin M, Smith LT, Smiraglia DJ, Kazhiyur-Mannar R, Lang JC, Schuller DE, Kornacker K, Wenger R, Plass C. DNA copy number gains in head and neck squamous cell carcinoma. Oncogene. 2006;25:1424–33.

    Article  CAS  PubMed  Google Scholar 

  48. Huh J, Tiu RV, Gondek LP, O’Keefe CL, Jasek M, Makishima H, Jankowska AM, Jiang Y, Verma A, Theil KS, McDevitt MA, Maciejewski JP. Characterization of chromosome arm 20q abnormalities in myeloid malignancies using genome-wide single nucleotide polymorphism array analysis. Genes Chromosomes Cancer. 2010;49:390–9.

    CAS  PubMed  Google Scholar 

  49. Postma C, Terwischa S, Hermsen MA, van der Sijp JR, Meijer GA. Gain of chromosome 20q is an indicator of poor prognosis in colorectal cancer. Cell Oncol. 2007;29:73–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Carvalho B, Postma C, Mongera S, Hopmans E, Diskin S, van de Wiel MA, van Criekinge W, Thas O, Matthäi A, Cuesta MA, Terhaar Sive Droste JS, Craanen M, Schröck E, Ylstra B, Meijer GA. Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut. 2009;58:79–89.

    Article  CAS  PubMed  Google Scholar 

  51. Wullich B, Riedinger S, Brinck U, Stoeckle M, Kamradt J, Ketter R, Jung V. Evidence for gains at 15q and 20q in brain metastases of prostate cancer. Cancer Genet Cytogenet. 2004;154:119–23.

    Article  CAS  PubMed  Google Scholar 

  52. Forozan F, Mahlamäki EH, Monni O, Chen Y, Veldman R, Jiang Y, Gooden GC, Ethier SP, Kallioniemi A, Kallioniemi OP. Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res. 2000;60:4519–25.

    CAS  PubMed  Google Scholar 

  53. Narayan G, Murty VV. Integrative genomic approaches in cervical cancer: implications for molecular pathogenesis. Future Oncol. 2010;6:1643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bar-Shira A, Pinthus JH, Rozovsky U, Goldstein M, Sellers WR, Yaron Y, Eshhar Z, Orr-Urtreger A. Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res. 2002;62:6803–7.

    CAS  PubMed  Google Scholar 

  55. Hui AB, Lo KW, Teo PM, To KF, Huang DP. Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization. Int J Oncol. 2002;20:467–73.

    CAS  PubMed  Google Scholar 

  56. Tong CY, Hui AB, Yin XL, Pang JC, Zhu XL, Poon WS, Ng HK. Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J Neurosurg. 2004;100:187–93.

    CAS  PubMed  Google Scholar 

  57. Idbaih A, Carvalho Silva R, Crinière E, Marie Y, Carpentier C, Boisselier B, Taillibert S, Rousseau A, Mokhtari K, Ducray F, Thillet J, Sanson M, Hoang-Xuan K, Delattre JY. Genomic changes in progression of low-grade gliomas. J Neuro-Oncol. 2008;90:133–40.

    Article  CAS  Google Scholar 

  58. Hui AB, Lo KW, Yin XL, Poon WS, Ng HK. Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab Investig. 2001;81:717–23.

    Article  CAS  PubMed  Google Scholar 

  59. Wang X, Liu Y, Shao D, Qian Z, Dong Z, Sun Y, Xing X, Cheng X, Du H, Hu Y, Li Y, Li L, Dong B, Li Z, Wu A, Wu X, Bu Z, Zong X, Zhu G, Ji Q, Wen XZ, Zhang LH, Ji JF. Recurrent amplification of MYC and TNFRSF11B in 8q24 is associated with poor survival in patients with gastric cancer. Gastric Cancer. 2016;19:116–27.

    Article  CAS  PubMed  Google Scholar 

  60. Fang WY, Liu TF, Xie WB, Yang XY, Wang S, Ren CP, Deng X, Liu QZ, Huang ZX, Li X, Ding YQ, Yao KT. Reexploring the possible roles of some genes associated with nasopharyngeal carcinoma using microarray-based detection. Acta Biochim Biophys Sin Shanghai. 2005;37:541–6.

    Article  CAS  PubMed  Google Scholar 

  61. Ouellet V, Guyot MC, Le Page C, Filali-Mouhim A, Lussier C, Tonin PN, Provencher DM, Mes-Masson AM. Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer. Int J Cancer. 2006;119:599–607.

    Article  CAS  PubMed  Google Scholar 

  62. Peiró G, Diebold J, Löhrs U. CAS (cellular apoptosis susceptibility) gene expression in ovarian carcinoma: correlation with 20q13.2 copy number and cyclin D1, p53, and Rb protein expression. Am J Clin Pathol. 2002;118:922–9.

    Article  PubMed  Google Scholar 

  63. Stawerski P, Wągrowska-Danilewicz M, Stasikowska O, Danilewicz M. Immunoexpression of CAS protein is augmented in high grade serous ovarian tumors. Pol J Pathol. 2010;61:219–23.

    PubMed  Google Scholar 

  64. Brustmann H. Expression of cellular apoptosis susceptibility protein in serous ovarian carcinoma: a clinicopathologic and immunohistochemical study. Gynecol Oncol. 2004;92:268–76.

    Article  CAS  PubMed  Google Scholar 

  65. Peiró G, Diebold J, Baretton GB, Kimmig R, Löhrs U. Cellular apoptosis susceptibility gene expression in endometrial carcinoma: correlation with Bcl-2, Bax, and caspase-3 expression and outcome. Int J Gynecol Pathol. 2001;20:359–67.

    Article  PubMed  Google Scholar 

  66. Shiraki K, Fujikawa K, Sugimoto K, Ito T, Yamanaka T, Suzuki M, Yoneda K, Sugimoto K, Takase K, Nakano T. Cellular apoptosis susceptibility protein and proliferation in human hepatocellular carcinoma. Int J Mol Med. 2006;18:77–81.

    CAS  PubMed  Google Scholar 

  67. Zang H, Zhao JM, Ji D, Sun YL, Zhou GD, Zhao YL, Chen GF. Expression of CAS in hepatocellular carcinoma tissues and its relationship with HBV infection. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2012;26:285–7.

    CAS  PubMed  Google Scholar 

  68. Qin LX, Tang ZY. The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol. 2002;8:385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wellmann A, Flemming P, Behrens P, Wuppermann K, Lang H, Oldhafer K, Pastan I, Brinkmann U. High expression of the proliferation and apoptosis associated CSE1L/CAS gene in hepatitis and liver neoplasms: correlation with tumor progression. Int J Mol Med. 2001;7:489–94.

    CAS  PubMed  Google Scholar 

  70. Soldini D, Montagna C, Schüffler P, Martin V, Georgis A, Thiesler T, Curioni-Fontecedro A, Went P, Bosshard G, Dehler S, Mazzuchelli L, Tinguely M. A new diagnostic algorithm for Burkitt and diffuse large B-cell lymphomas based on the expression of CSE1L and STAT3 and on MYC rearrangement predicts outcome. Ann Oncol. 2013;24:193–201.

    Article  CAS  PubMed  Google Scholar 

  71. Wellmann A, Krenacs L, Fest T, Scherf U, Pastan I, Raffeld M, Brinkmann U. Localization of the cell proliferation and apoptosis-associated CAS protein in lymphoid neoplasms. Am J Pathol. 1997;150:25–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sillars-Hardebol AH, Carvalho B, Beliën JA, de Wit M, Delis-van Diemen PM, Tijssen M, van de Wiel MA, Pontén F, Meijer GA, Fijneman RJ. CSE1L, DIDO1 and RBM39 in colorectal adenoma to carcinoma progression. Cell Oncol (Dordr). 2012;35:293–300.

    Article  CAS  Google Scholar 

  73. Alnabulsi A, Agouni A, Mitra S, Garcia-Murillas I, Carpenter B, Bird S, Murray GI. Cellular apoptosis susceptibility (chromosome segregation 1-like, CSE1L) gene is a key regulator of apoptosis, migration and invasion in colorectal cancer. J Pathol. 2012;228:471–81.

    Article  CAS  PubMed  Google Scholar 

  74. Tai CJ, Su TC, Jiang MC, Chen HC, Shen SC, Lee WR, Liao CF, Chen YC, Lin SH, Li LT, Shen KH, Yeh CM, Yeh KT, Lee CH, Shih HY, Chang CC. Correlations between cytoplasmic CSE1L in neoplastic colorectal glands and depth of tumor penetration and cancer stage. J Transl Med 2013;11:29.

  75. Seiden-Long IM, Brown KR, Shih W, Wigle DA, Radulovich N, Jurisica I, Tsao MS. Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer. Oncogene. 2006;25:91–102.

    CAS  PubMed  Google Scholar 

  76. Behrens P, Brinkmann U, Fogt F, Wernert N, Wellmann A. Implication of the proliferation and apoptosis associated CSE1L/CAS gene for breast cancer development. Anticancer Res. 2001;21:2413–7.

    CAS  PubMed  Google Scholar 

  77. Yuksel UM, Dilek G, Dogan L, Gulcelik MA, Berberoglu U. The relationship between CSE1L expression and axillary lymph node metastasis in breast cancer. Tumori. 2015;101:194–8.

    Article  PubMed  Google Scholar 

  78. Yuksel UM, Turker I, Dilek G, Dogan L, Gulcelik MA, Oksuzoglu B. Does CSE1L overexpression affect distant metastasis development in breast cancer? Oncol Res Treat. 2015;38:431–4.

    Article  CAS  PubMed  Google Scholar 

  79. Böni R, Wellmann A, Man YG, Hofbauer G, Brinkmann U. Expression of the proliferation and apoptosis-associated CAS protein in benign and malignant cutaneous melanocytic lesions. Am J Dermatopathol. 1999;21:125–8.

    Article  PubMed  Google Scholar 

  80. Chin SY, Wu PR, Shih YH, Yeh CM, Lee WR, Shen SC, Yeh KT, Jiang MC, Tseng JT. High expression of cytoplasmic phosphorylated CSE1L in malignant melanoma but not in benign nevi: phosphorylated CSE1L for the discrimination between melanoma and benign nevi. Int J Clin Exp Pathol. 2015;8:1393–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chang CC, Tai CJ, Su TC, Shen KH, Lin SH, Yeh CM, Yeh KT, Lin YM, Jiang MC. The prognostic significance of nuclear CSE1L in urinary bladder urothelial carcinomas. Ann Diagn Pathol. 2012;16:362–8.

    Article  PubMed  Google Scholar 

  82. Papay J, Krenacs T, Moldvay J, Stelkovics E, Furak J, Molnar B, Kopper L. Immunophenotypic profiling of nonsmall cell lung cancer progression using the tissue microarray approach. Appl Immunohistochem Mol Morphol. 2007;15:19–30.

    Article  CAS  PubMed  Google Scholar 

  83. Holzer K, Drucker E, Oliver S, Winkler J, Eiteneuer E, Herpel E, Breuhahn K, Singer S. Cellular apoptosis susceptibility (CAS) is overexpressed in thyroid carcinoma and maintains tumor cell growth: a potential link to the BRAFV600E mutation. Int J Oncol. 2016;48:1679–87.

    CAS  PubMed  Google Scholar 

  84. Moeller SJ, Sheaff RJ. G1 phase: components, conundrums, context. Results Probl Cell Differ. 2006;42:1–29.

    Article  CAS  PubMed  Google Scholar 

  85. Zhu JH, Hong DF, Song YM, Sun LF, Wang ZF, Wang JW. Suppression of cellular apoptosis susceptibility (CSE1L) inhibits proliferation and induces apoptosis in colorectal cancer cells. Asian Pac J Cancer Prev. 2013;14:1017–21.

    Article  PubMed  Google Scholar 

  86. Liao CF, Luo SF, Li LT, Lin CY, Chen YC, Jiang MC. CSE1L/CAS, the cellular apoptosis susceptibility protein, enhances invasion and metastasis but not proliferation of cancer cells. J Exp Clin Cancer Res. 2008;27:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Radulescu RT. Oncoprotein metastasis: an expanded topography. Romanian J Morphol Embryol. 2013;54:237–9.

    Google Scholar 

  88. Jiang MC, Yeh CM, Tai CJ, Chen HC, Lin SH, Su TC, Shen SC, Lee WR, Liao CF, Li LT, Lee CH, Chen YC, Yeh KT, Chang CC. CSE1L modulates Ras-induced cancer cell invasion: correlation of K-Ras mutation and CSE1L expression in colorectal cancer progression. Am J Surg. 2013;206:418–27.

    Article  CAS  PubMed  Google Scholar 

  89. Hui AM, Li X, Makuuchi M, Takayama T, Kubota K. Over-expression and lack of retinoblastoma protein are associated with tumor progression and metastasis in hepatocellular carcinoma. Int J Cancer. 1999;84:604–8.

    Article  CAS  PubMed  Google Scholar 

  90. Schaal C, Pillai S, Chellappan SP. The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res. 2014;121:147–82.

    Article  CAS  PubMed  Google Scholar 

  91. Radulescu RT. The nucleocrine pathway comes of age. Romanian J Morphol Embryol. 2015;56:343–8.

    Google Scholar 

  92. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, Forero-Torres A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363:1812–21.

    Article  CAS  PubMed  Google Scholar 

  93. Niculescu-Duvaz I. Trastuzumab emtansine, an antibody-drug conjugate for the treatment of HER2+ metastatic breast cancer. Curr Opin Mol Ther. 2010;12:350–60.

    CAS  PubMed  Google Scholar 

  94. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  95. Chang WW, Lee CH, Lee P, Lin J, Hsu CW, Hung JT, Lin JJ, Yu JC, Shao LE, Yu J, Wong CH, Yu AL. Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A. 2008;105:11667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25:364–72.

    Article  CAS  PubMed  Google Scholar 

  97. Behrens P, Brinkmann U, Wellmann A. CSE1L/CAS: its role in proliferation and apoptosis. Apoptosis. 2003;8:39–44.

    Article  CAS  PubMed  Google Scholar 

  98. Scherf U, Kalab P, Dasso M, Pastan I, Brinkmann U. The hCSE1/CAS protein is phosphorylated by HeLa extracts and MEK-1: MEK-1 phosphorylation may modulate the intracellular localization of CAS. Biochem Biophys Res Commun. 1998;250:623–8.

    Article  CAS  PubMed  Google Scholar 

  99. Sugiura T, Noguchi Y, Sakurai K, Hattori C. Protein phosphatase 1H, overexpressed in colon adenocarcinoma, is associated with CSE1L. Cancer Biol Ther. 2008;7:285–92.

    Article  CAS  PubMed  Google Scholar 

  100. Tanaka T, Ohkubo S, Tatsuno I, Prives C. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell. 2007;130:638–50.

    Article  CAS  PubMed  Google Scholar 

  101. Lorenzato A, Biolatti M, Delogu G, Capobianco G, Farace C, Dessole S, Cossu A, Tanda F, Madeddu R, Olivero M, Di Renzo MF. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells. Exp Cell Res. 2013;319:2627–36.

    Article  CAS  PubMed  Google Scholar 

  102. Uen WC, Tai CJ, Shen SC, Lee WR, Tsao TY, Deng WP, Chiou HY, Hsu CH, Hsieh CI, Liao CF, Jiang MC. Differential distributions of CSE1L/CAS and E-cadherin in the polarized and non-polarized epithelial glands of neoplastic colorectal epithelium. J Mol Histol. 2010;41:259–66.

    Article  CAS  PubMed  Google Scholar 

  103. Jiang MC, Laio CF, Tai CC. CAS binds with E-cadherin and stimulates polarity of HT-29 human colon cells. Biochem Biophys Res Commun. 2002;294:900–5.

    Article  CAS  PubMed  Google Scholar 

  104. Jiang MC, Laio CF. CSE1/CAS overexpression inhibits the tumorigenicity of HT-29 colon cancer cells. J Exp Clin Cancer Res. 2004;23:325–32.

    CAS  PubMed  Google Scholar 

  105. Jiang MC, Lin TL, Lee TL, Huang HT, Lin CL, Liao CF. IRF-1-mediated CAS expression enhances interferon-gamma-induced apoptosis of HT-29 colon adenocarcinoma cells. Mol Cell Biol Res Commun. 2001;4:353–8.

    Article  CAS  PubMed  Google Scholar 

  106. Jiang MC, Luo SF, Li LT, Lin CC, Du SY, Lin CY, Hsu YW, Liao CF. Synergic CSE1L/CAS, TNFR-1, and p53 apoptotic pathways in combined interferon-gamma/adriamycin-induced apoptosis of Hep G2 hepatoma cells. J Exp Clin Cancer Res. 2007;26:91–9.

    CAS  PubMed  Google Scholar 

  107. Liao CF, Luo SF, Tsai CS, Tsao TY, Chen SL, Jiang MC. CAS enhances chemotherapeutic drug-induced p53 accumulation and apoptosis: use of CAS for high-sensitivity anticancer drug screening. Toxicol Mech Methods. 2008;18:771–6.

    Article  CAS  PubMed  Google Scholar 

  108. Tai CJ, Shen SC, Lee WR, Liao CF, Deng WP, Chiou HY, Hsieh CI, Tung JN, Chen CS, Chiou JF, Li LT, Lin CY, Hsu CH, Jiang MC. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969–81.

    Article  CAS  PubMed  Google Scholar 

  109. Liao CF, Luo SF, Shen TY, Lin CH, Chien JT, Du SY, Jiang MC. CSE1L/CAS, a microtubule-associated protein, inhibits taxol (paclitaxel)-induced apoptosis but enhances cancer cell apoptosis induced by various chemotherapeutic drugs. BMB Rep. 2008;41:210–6.

    Article  CAS  PubMed  Google Scholar 

  110. Li KK, Yang L, Pang JC, Chan AK, Zhou L, Mao Y, Wang Y, Lau KM, Poon WS, Shi Z, Ng HK. MIR-137 suppresses growth and invasion, is downregulated in oligodendroglial tumors and targets CSE1L. Brain Pathol. 2013;23:426–39.

    Article  CAS  PubMed  Google Scholar 

  111. Gardner AM, Vaillancourt RR, Lange-Carter CA, Johnson GL. MEK-1 phosphorylation by MEK kinase, Raf, and mitogen-activated protein kinase: analysis of phosphopeptides and regulation of activity. Mol Biol Cell. 1994;5:193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin A, Minden A, Martinetto H, Claret FX, Lange-Carter C, Mercurio F, Johnson GL, Karin M. Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science. 1995;268:286–90.

    Article  CAS  PubMed  Google Scholar 

  113. Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006;12:406–14.

    Article  CAS  PubMed  Google Scholar 

  114. Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J Cell Sci. 2003;116:1699–706.

    Article  CAS  PubMed  Google Scholar 

  115. Praetorius C, Grill C, Stacey SN, Metcalf AM, Gorkin DU, Robinson KC, Van Otterloo E, Kim RS, Bergsteinsdottir K, Ogmundsdottir MH, Magnusdottir E, Mishra PJ, Davis SR, Guo T, Zaidi MR, Helgason AS, Sigurdsson MI, Meltzer PS, Merlino G, Petit V, Larue L, Loftus SK, Adams DR, Sobhiafshar U, Emre NC, Pavan WJ, Cornell R, Smith AG, McCallion AS, Fisher DE, Stefansson K, Sturm RA, Steingrimsson E. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell. 2013;155:1022–33.

    Article  CAS  PubMed  Google Scholar 

  116. Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, Bhadra R. Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signaling to CREB. Pigment Cell Res. 2006;19:595–605.

    Article  CAS  PubMed  Google Scholar 

  117. Braeuer RR, Zigler M, Villares GJ, Dobroff AS, Bar-Eli M. Transcriptional control of melanoma metastasis: the importance of the tumor microenvironment. Semin Cancer Biol. 2011;21:3–88.

    Article  CAS  Google Scholar 

  118. Houben R, Becker JC, Kappel A, Terheyden P, Bröcker EB, Goetz R, Rapp UR. Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. J Carcinog. 2004;3:6.109

  119. Reifenberger J, Knobbe CB, Sterzinger AA, Blaschke B, Schulte KW, Ruzicka T, Reifenberger G. Frequent alterations of Ras signaling pathway genes in sporadic malignant melanomas. Int J Cancer. 2004;109:377–84.

    Article  CAS  PubMed  Google Scholar 

  120. Molina DM, Grewal S, Bardwell L. Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J Biol Chem. 2005;280:42051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT, Donahue MK, Narayan R, Flaherty KT, Wargo JA, Root DE, Garraway LA. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature. 2013;504:138–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sanchez-Laorden B, Viros A, Girotti MR, Pedersen M, Saturno G, Zambon A, Niculescu-Duvaz D, Turajlic S, Hayes A, Gore M, Larkin J, Lorigan P, Cook M, Springer C, Marais R. BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling. Sci Signal. 2014;7:ra30.

    Article  PubMed  CAS  Google Scholar 

  123. Wilmott JS, Menzies AM, Haydu LE, Capper D, Preusser M, Zhang YE, Thompson JF, Kefford RF, von Deimling A, Scolyer RA, Long GV. BRAFV600E protein expression and outcome from BRAF inhibitor treatment in BRAF V600E metastatic melanoma. Br J Cancer. 2013;108:924–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Johnson DB, Peng C, Sosman JA. Nivolumab in melanoma: latest evidence and clinical potential. Ther Adv Med Oncol. 2015;7:97–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sundar R, Cho BC, Brahmer JR, Soo RA. Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol. 2015;7:85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schmidt LH, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch JH, Grünewald I, Marra A, Schultheis AM, Wardelmann E, Müller-Tidow C, Spieker T, Schliemann C, Berdel WE, Wiewrodt R, Hartmann W. PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PLoS One. 2015;10:e0136023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Tarhini AA, Zahoor H, Yearley JH, Gibson C, Rahman Z, Dubner R, Rao UN, Sander C, Kirkwood JM. Tumor associated PD-L1 expression pattern in microscopically tumor positive sentinel lymph nodes in patients with melanoma. J Transl Med 2015;13:319.

  128. Jager PL, Gietema JA, van der Graaf WT. Imatinib mesylate for the treatment of gastrointestinal stromal tumours: best monitored with FDG PET. Nucl Med Commun. 2004;25:433–8.

    Article  CAS  PubMed  Google Scholar 

  129. Haioun C, Itti E, Rahmouni A, Brice P, Rain JD, Belhadj K, Gaulard P, Garderet L, Lepage E, Reyes F, Meignan M. 18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood. 2005;106:1376–81.

    Article  CAS  PubMed  Google Scholar 

  130. Kwee TC, Kwee RM. Combined FDG-PET/CT for the detection of unknown primary tumors: systematic review and meta-analysis. Eur Radiol. 2009;19:731–44.

    Article  PubMed  Google Scholar 

  131. Castellucci P, Fuccio C, Rubello D, Schiavina R, Santi I, Nanni C, Allegri V, Montini GC, Ambrosini V, Boschi S, Martorana G, Marzola MC, Fanti S. Is there a role for 11C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml? Nucl Med Commun. 2014;35:20–9.

    Article  CAS  Google Scholar 

  132. Van den Abbeele AD. The lessons of GIST-PET and PET/CT: a new paradigm for imaging. Oncologist. 2008;13(Suppl 2):8–13.

    Article  PubMed  Google Scholar 

  133. Smith TA, Cheyne RW. Predicting tumour response to anti-HER1 therapy using medical imaging: a literature review and in vitro study of [18F]-FDG incorporation by breast cancer cells responding to cetuximab. Br J Biomed Sci. 2011;68:158–66.

    Article  CAS  PubMed  Google Scholar 

  134. Lorenzato A, Martino C, Dani N, Oligschläger Y, Ferrero AM, Biglia N, Calogero R, Olivero M, Di Renzo MF. The cellular apoptosis susceptibility CAS/CSE1L gene protects ovarian cancer cells from death by suppressing RASSF1C. FASEB J. 2012;26:2446–56.

    Article  CAS  PubMed  Google Scholar 

  135. Roskoski Jr R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74.

    Article  CAS  PubMed  Google Scholar 

  136. Pedram A, Razandi M, Levin ER. Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem. 1998;273:26722–8.

    Article  CAS  PubMed  Google Scholar 

  137. Wandzioch E, Edling CE, Palmer RH, Carlsson L, Hallberg B. Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines. Blood. 2004;104:51–7.

    Article  CAS  PubMed  Google Scholar 

  138. Tanimura S, Chatani Y, Hoshino R, Sato M, Watanabe S, Kataoka T, Nakamura T, Kohno M. Activation of the 41/43 kDa mitogen-activated protein kinase signaling pathway is required for hepatocyte growth factor-induced cell scattering. Oncogene. 1998;17:57–65.

    Article  CAS  PubMed  Google Scholar 

  139. Roskoski Jr R. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66:105–43.

    Article  CAS  PubMed  Google Scholar 

  140. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, BRIM-3 Study Group. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Dutriaux C, Garbe C, Sovak MA, Chang I, Choong N, Hack SP, McArthur GA, Ribas A. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ching-Fong Liao, Dr. Jai-Nien Tung, Dr. Kun-Tu Yeh, Dr. Woan-Ruoh Lee, and Dr. Shing-Chuan Shen for the support and cooperation in studies presented in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chung Jiang.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, MC. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy. Tumor Biol. 37, 13077–13090 (2016). https://doi.org/10.1007/s13277-016-5301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5301-x

Keywords

Navigation