Skip to main content

Advertisement

Log in

Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing

  • Original Article
  • Published:
Tumor Biology

Abstract

Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients’ plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AUC:

Area under the receiver operating characteristic curve

BSP:

Bisulfite sequencing primer

cfDNA:

Cell-free DNA

CI:

Confidential interval

ctDNA:

Circulating tumor DNA

ER:

Estrogen receptor

HER2:

Human epidermal growth factor receptor-2

NGS:

Next-generation sequencing

OR:

Odds ratio

PR:

Progesterone receptor

ROC:

Receiver operating characteristics

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  2. Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD, Chen WQ, Shao ZM, Goss PE. Breast cancer in China. Lancet Oncol. 2014;15(7):e279–89. doi:10.1016/S1470-2045(13)70567-9.

    Article  PubMed  Google Scholar 

  3. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016. doi:10.3322/caac.21338.

    Google Scholar 

  4. Radpour R, Barekati Z, Kohler C, Lv Q, Burki N, Diesch C, Bitzer J, Zheng H, Schmid S, Zhong XY. Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One. 2011;6(1):e16080. doi:10.1371/journal.pone.0016080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Modern Pathol Off J US Can Acad Pathol Inc. 2013;26(4):465–84. doi:10.1038/modpathol.2012.214.

    CAS  Google Scholar 

  6. Rhee JK, Kim K, Chae H, Evans J, Yan P, Zhang BT, Gray J, Spellman P, Huang TH, Nephew KP, Kim S. Integrated analysis of genome-wide DNA methylation and gene expression profiles in molecular subtypes of breast cancer. Nucleic Acids Res. 2013;41(18):8464–74. doi:10.1093/nar/gkt643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13(10):679–92. doi:10.1038/nrg3270.

    Article  CAS  PubMed  Google Scholar 

  8. Noehammer C, Pulverer W, Hassler MR, Hofner M, Wielscher M, Vierlinger K, Liloglou T, McCarthy D, Jensen TJ, Nygren A, Gohlke H, Trooskens G, Braspenning M, Van Criekinge W, Egger G, Weinhaeusel A. Strategies for validation and testing of DNA methylation biomarkers. Epigenomics. 2014;6(6):603–22. doi:10.2217/epi.14.43.

    Article  CAS  PubMed  Google Scholar 

  9. Massihnia D, Perez A, Bazan V, Bronte G, Castiglia M, Fanale D, Barraco N, Cangemi A, Di Piazza F, Calo V, Rizzo S, Cicero G, Pantuso G, Russo A. A headlight on liquid biopsies: a challenging tool for breast cancer management. Tumour Biol J Int Soc Oncodev Biol Med. 2016. doi:10.1007/s13277-016-4856-x.

    Google Scholar 

  10. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84. doi:10.1038/nrclinonc.2013.110.

    Article  CAS  PubMed  Google Scholar 

  11. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766–9. doi:10.1038/cr.2014.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013;14(9):18925–58. doi:10.3390/ijms140918925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwarzenbach H, Pantel K. Circulating DNA as biomarker in breast cancer. Breast Cancer Res: BCR. 2015;17(1):136. doi:10.1186/s13058-015-0645-5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fackler MJ, Lopez Bujanda Z, Umbricht C, Teo WW, Cho S, Zhang Z, Visvanathan K, Jeter S, Argani P, Wang C, Lyman JP, de Brot M, Ingle JN, Boughey J, McGuire K, King TA, Carey LA, Cope L, Wolff AC, Sukumar S. Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res. 2014;74(8):2160–70. doi:10.1158/0008-5472.CAN-13-3392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guerrero-Preston R, Hadar T, Ostrow KL, Soudry E, Echenique M, Ili-Gangas C, Perez G, Perez J, Brebi-Mieville P, Deschamps J, Morales L, Bayona M, Sidransky D, Matta J. Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity. Oncol Rep. 2014;32(2):505–12. doi:10.3892/or.2014.3262.

    PubMed  PubMed Central  Google Scholar 

  16. Chan KC, Jiang P, Chan CW, Sun K, Wong J, Hui EP, Chan SL, Chan WC, Hui DS, Ng SS, Chan HL, Wong CS, Ma BB, Chan AT, Lai PB, Sun H, Chiu RW, Lo YM. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A. 2013;110(47):18761–8. doi:10.1073/pnas.1313995110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vaca-Paniagua F, Oliver J, Nogueira da Costa A, Merle P, McKay J, Herceg Z, Holmila R. Targeted deep DNA methylation analysis of circulating cell-free DNA in plasma using massively parallel semiconductor sequencing. Epigenomics. 2015;7(3):353–62. doi:10.2217/epi.14.94.

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Guo X, Wu Y, Li S, Yan J, Peng L, Xiao Z, Wang S, Deng Z, Dai L, Yi W, Xia K, Tang L, Wang J. Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients. Breast Cancer Res Treat. 2015;149(3):767–79. doi:10.1007/s10549-015-3276-8.

    Article  CAS  PubMed  Google Scholar 

  19. Kampfrath T, Levinson SS. Brief critical review: statistical assessment of biomarker performance. Clin Chim Acta Int J Clin Chem. 2013;419:102–7. doi:10.1016/j.cca.2013.02.006.

    Article  CAS  Google Scholar 

  20. Holdman XB, Welte T, Rajapakshe K, Pond A, Coarfa C, Mo Q, Huang S, Hilsenbeck SG, Edwards DP, Zhang X, Rosen JM. Upregulation of EGFR signaling is correlated with tumor stroma remodeling and tumor recurrence in FGFR1-driven breast cancer. Breast Cancer Res: BCR. 2015;17:141. doi:10.1186/s13058-015-0649-1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Voss M, Paterson J, Kelsall IR, Martin-Granados C, Hastie CJ, Peggie MW, Cohen PT. Ppm1E is an in cellulo AMP-activated protein kinase phosphatase. Cell Signal. 2011;23(1):114–24. doi:10.1016/j.cellsig.2010.08.010.

    Article  CAS  PubMed  Google Scholar 

  22. Rodenhiser DI, Andrews J, Kennette W, Sadikovic B, Mendlowitz A, Tuck AB, Chambers AF. Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast Cancer Res: BCR. 2008;10(4):R62. doi:10.1186/bcr2121.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rauscher GH, Kresovich JK, Poulin M, Yan L, Macias V, Mahmoud AM, Al-Alem U, Kajdacsy-Balla A, Wiley EL, Tonetti D, Ehrlich M. Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer. 2015;15:816. doi:10.1186/s12885-015-1777-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scartozzi M, Bearzi I, Mandolesi A, Giampieri R, Faloppi L, Galizia E, Loupakis F, Zaniboni A, Zorzi F, Biscotti T, Labianca R, Falcone A, Cascinu S. Epidermal growth factor receptor (EGFR) gene promoter methylation and cetuximab treatment in colorectal cancer patients. Br J Cancer. 2011;104(11):1786–90. doi:10.1038/bjc.2011.161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montero AJ, Diaz-Montero CM, Mao L, Youssef EM, Estecio M, Shen L, Issa JP. Epigenetic inactivation of EGFR by CpG island hypermethylation in cancer. Cancer Biol Ther. 2006;5(11):1494–501.

    Article  CAS  PubMed  Google Scholar 

  26. Weng X, Zhang H, Ye J, Kan M, Liu F, Wang T, Deng J, Tan Y, He L, Liu Y. Hypermethylated epidermal growth factor receptor (EGFR) promoter is associated with gastric cancer. Sci Report. 2015;5:10154. doi:10.1038/srep10154.

    Article  CAS  Google Scholar 

  27. Varley KE, Mitra RD. Bisulfite patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Res. 2010;20(9):1279–87. doi:10.1101/gr.101212.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Danese E, Minicozzi AM, Benati M, Montagnana M, Paviati E, Salvagno GL, Lima-Oliveira G, Gusella M, Pasini F, Lippi G, Guidi GC. Comparison of genetic and epigenetic alterations of primary tumors and matched plasma samples in patients with colorectal cancer. PLoS One. 2015;10(5):e0126417. doi:10.1371/journal.pone.0126417.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fu D, Ren C, Tan H, Wei J, Zhu Y, He C, Shao W, Zhang J. Sox17 promoter methylation in plasma DNA is associated with poor survival and can be used as a prognostic factor in breast cancer. Medicine. 2015;94(11):e637. doi:10.1097/MD.0000000000000637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kloten V, Becker B, Winner K, Schrauder MG, Fasching PA, Anzeneder T, Veeck J, Hartmann A, Knuchel R, Dahl E. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res: BCR. 2013;15(1):R4. doi:10.1186/bcr3375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deng J, Liang H, Ying G, Dong Q, Zhang L, Yu J, Fan D, Hao X. Clinical significance of the methylated cytosine-phosphate-guanine sites of protocadherin-10 promoter for evaluating the prognosis of gastric cancer. J Am Coll Surg. 2014;219(5):904–13. doi:10.1016/j.jamcollsurg.2014.06.014.

    Article  PubMed  Google Scholar 

  32. Warton K, Lin V, Navin T, Armstrong NJ, Kaplan W, Ying K, Gloss B, Mangs H, Nair SS, Hacker NF, Sutherland RL, Clark SJ, Samimi G. Methylation-capture and next-generation sequencing of free circulating DNA from human plasma. BMC Genomics. 2014;15:476. doi:10.1186/1471-2164-15-476.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Redshaw N, Huggett JF, Taylor MS, Foy CA, Devonshire AS. Quantification of epigenetic biomarkers: an evaluation of established and emerging methods for DNA methylation analysis. BMC Genomics. 2014;15:1174. doi:10.1186/1471-2164-15-1174.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang R, Pfutze K, Zucknick M, Sutter C, Wappenschmidt B, Marme F, Qu B, Cuk K, Engel C, Schott S, Schneeweiss A, Brenner H, Claus R, Plass C, Bugert P, Hoth M, Sohn C, Schmutzler R, Bartram CR, Burwinkel B. DNA methylation array analyses identified breast cancer-associated HYAL2 methylation in peripheral blood. Int J Cancer J Int Cancer. 2015;136(8):1845–55. doi:10.1002/ijc.29205.

    Article  CAS  Google Scholar 

  35. Harrison K, Hoad G, Scott P, Simpson L, Horgan GW, Smyth E, Heys SD, Haggarty P. Breast cancer risk and imprinting methylation in blood. Clin Epigenetics. 2015;7(1):92. doi:10.1186/s13148-015-0125-x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jing F, Yuping W, Yong C, Jie L, Jun L, Xuanbing T, Lihua H. CpG island methylator phenotype of multigene in serum of sporadic breast carcinoma. Tumour Biol J Int Soc Oncodev Biol Med. 2010;31(4):321–31. doi:10.1007/s13277-010-0040-x.

    Article  Google Scholar 

  37. Yang P, Ma J, Zhang B, Duan H, He Z, Zeng J, Zeng X, Li D, Wang Q, Xiao Y, Liu C, Xiao Q, Chen L, Zhu X, Xing X, Li Z, Zhang S, Zhang Z, Ma L, Wang E, Zhuang Z, Zheng Y, Chen W. CpG site-specific hypermethylation of p16INK4alpha in peripheral blood lymphocytes of PAH-exposed workers. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2012;21(1):182–90. doi:10.1158/1055-9965.EPI-11-0784.

    Article  CAS  Google Scholar 

  38. Moskalev EA, Jandaghi P, Fallah M, Manoochehri M, Botla SK, Kolychev OV, Nikitin EA, Bubnov VV, von Knebel DM, Strobel O, Hackert T, Buchler MW, Giese N, Bauer A, Muley T, Warth A, Schirmacher P, Haller F, Hoheisel JD, Riazalhosseini Y. GHSR DNA hypermethylation is a common epigenetic alteration of high diagnostic value in a broad spectrum of cancers. Oncotarget. 2015;6(6):4418–27. doi:10.18632/oncotarget.2759.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sang Q, Li X, Wang H, Wang H, Zhang S, Feng R, Xu Y, Li Q, Zhao X, Xing Q, Jin L, He L, Wang L. Quantitative methylation level of the EPHX1 promoter in peripheral blood DNA is associated with polycystic ovary syndrome. PLoS One. 2014;9(2):e88013. doi:10.1371/journal.pone.0088013.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang D, Cui W, Wu X, Qu Y, Wang N, Shi B, Hou P. RUNX3 site-specific hypermethylation predicts papillary thyroid cancer recurrence. Am J Cancer Res. 2014;4(6):725–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. van Vlodrop IJ, Niessen HE, Derks S, Baldewijns MM, van Criekinge W, Herman JG, van Engeland M. Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(13):4225–31. doi:10.1158/1078-0432.CCR-10-3394.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Natural Science Foundation of China (No. 81272296 and No. 81372228), the Scientific Project of China Hunan Provincial Science and Technology Department (No. 2012SK2013), and the Major Special Projects of the Science and Technology Bureau of Changsha, China (No. K1204017-31 and K1306011-31). Zibo Li was supported by the Hunan Province Postgraduate Student Scientific Innovation Project, China (No. CX2013B087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Ethical standards

We declare that the experiments performed in this study comply with the current laws of the People’s Republic of China.

Conflicts of interest

Xinwu Guo, Limin Peng, Ming Chen, Xipeng Luo, Zhongping Deng, and Lizhong Dai are employees of Sanway Gene Technology Inc.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Guo, X., Tang, L. et al. Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing. Tumor Biol. 37, 13111–13119 (2016). https://doi.org/10.1007/s13277-016-5190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5190-z

Keywords

Navigation