Skip to main content

Advertisement

Log in

Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Gene-specific methylation alterations in breast cancer have been suggested to occur early in tumorigenesis and have the potential to be used for early detection and prevention. The continuous increase in worldwide breast cancer incidences emphasizes the urgent need for identification of methylation biomarkers for early cancer detection and patient stratification. Using microfluidic PCR-based target enrichment and next-generation bisulfite sequencing technology, we analyzed methylation status of 48 candidate genes in paired tumor and normal tissues from 180 Chinese breast cancer patients. Analysis of the sequencing results showed 37 genes differentially methylated between tumor and matched normal tissues. Breast cancer samples with different clinicopathologic characteristics demonstrated distinct profiles of gene methylation. The methylation levels were significantly different between breast cancer subtypes, with basal-like and luminal B tumors having the lowest and the highest methylation levels, respectively. Six genes (ACADL, ADAMTSL1, CAV1, NPY, PTGS2, and RUNX3) showed significant differential methylation among the 4 breast cancer subtypes and also between the ER +/ER- tumors. Using unsupervised hierarchical clustering analysis, we identified a panel of 13 hypermethylated genes as candidate biomarkers that performed a high level of efficiency for cancer prediction. These 13 genes included CST6, DBC1, EGFR, GREM1, GSTP1, IGFBP3, PDGFRB, PPM1E, SFRP1, SFRP2, SOX17, TNFRSF10D, and WRN. Our results provide evidence that well-defined DNA methylation profiles enable breast cancer prediction and patient stratification. The novel gene panel might be a valuable biomarker for early detection of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSP:

Bisulfite sequencing primer

ER:

Estrogen receptor

PR:

Progesterone receptor

HER2:

Human epidermal growth factor receptor-2

IFCs:

Integrated fluidic circuits

TP:

True positive

FP:

False positive

TN:

True negative

FN:

False negative

ROC:

Receiver operating characteristics

AUC:

Area under the ROC curve

MLR:

Multivariate logistics regression

References

  1. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. International Agency for Research on Cancer, Lyon. http://globocan.iarc.fr. Accessed on 17 Aug 2014

  2. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L (2003) The case for early detection. Nat Rev Cancer 3(4):243–252. doi:10.1038/nrc1041

    Article  CAS  PubMed  Google Scholar 

  3. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33. doi:10.1038/nrg1748

    Article  CAS  PubMed  Google Scholar 

  4. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692. doi:10.1016/j.cell.2007.01.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Suijkerbuijk KP, van Diest PJ, van der Wall E (2011) Improving early breast cancer detection: focus on methylation. Ann Oncol 22(1):24–29. doi:10.1093/annonc/mdq305

    Article  CAS  PubMed  Google Scholar 

  6. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298. doi:10.1038/nrg2005

    Article  CAS  PubMed  Google Scholar 

  7. Radpour R, Barekati Z, Kohler C, Lv Q, Burki N, Diesch C, Bitzer J, Zheng H, Schmid S, Zhong XY (2011) Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One 6(1):e16080. doi:10.1371/journal.pone.0016080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fackler MJ, Bujanda ZL, Umbricht C, Teo WW, Cho S, Zhang Z, Visvanathan K, Jeter S, Argani P, Wang C, Lyman JP, de Brot M, Ingle JN, Boughey J, McGuire K, King TA, Carey LA, Cope L, Wolff AC, Sukumar S (2014) Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res 74(8):2160–2170. doi:10.1158/0008-5472.CAN-13-3392

    Article  CAS  PubMed  Google Scholar 

  9. Chan KC, Jiang P, Chan CW, Sun K, Wong J, Hui EP, Chan SL, Chan WC, Hui DS, Ng SS, Chan HL, Wong CS, Ma BB, Chan AT, Lai PB, Sun H, Chiu RW, Lo YM (2013) Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci USA 110(47):18761–18768. doi:10.1073/pnas.1313995110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kloten V, Becker B, Winner K, Schrauder MG, Fasching PA, Anzeneder T, Veeck J, Hartmann A, Knuchel R, Dahl E (2013) Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res 15(1):R4. doi:10.1186/bcr3375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X, Huan S, Huang M, Liu J, Sahin AA, Hunt KK, Bast RC Jr, Shen Y, Issa JP, Yu Y (2007) Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 9(4):R57. doi:10.1186/bcr1762

    Article  PubMed Central  PubMed  Google Scholar 

  12. Fiegl H, Millinger S, Goebel G, Muller-Holzner E, Marth C, Laird PW, Widschwendter M (2006) Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 66(1):29–33. doi:10.1158/0008-5472.CAN-05-2508

    Article  CAS  PubMed  Google Scholar 

  13. Bediaga NG, Acha-Sagredo A, Guerra I, Viguri A, Albaina C, Ruiz Diaz I, Rezola R, Alberdi MJ, Dopazo J, Montaner D, Renobales M, Fernandez AF, Field JK, Fraga MF, Liloglou T, de Pancorbo MM (2010) DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res 12(5):R77. doi:10.1186/bcr2721

    Article  PubMed Central  PubMed  Google Scholar 

  14. Holm K, Hegardt C, Staaf J, Vallon-Christersson J, Jonsson G, Olsson H, Borg A, Ringner M (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12(3):R36. doi:10.1186/bcr2590

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G (2010) Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 11:137. doi:10.1186/1471-2164-11-137

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, Maher ER, Latif F (2011) Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res 71(8):2988–2999. doi:10.1158/0008-5472.CAN-10-4026

    Article  CAS  PubMed  Google Scholar 

  17. Fackler MJ, Umbricht CB, Williams D, Argani P, Cruz LA, Merino VF, Teo WW, Zhang Z, Huang P, Visvananthan K, Marks J, Ethier S, Gray JW, Wolff AC, Cope LM, Sukumar S (2011) Genome-wide methylation analysis identifies genes specific to breast cancer hormone receptor status and risk of recurrence. Cancer Res 71(19):6195–6207. doi:10.1158/0008-5472.CAN-11-1630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. doi:10.1038/nature11412

    Article  Google Scholar 

  19. Cornen S, Guille A, Adelaide J, Addou-Klouche L, Finetti P, Saade MR, Manai M, Carbuccia N, Bekhouche I, Letessier A, Raynaud S, Charafe-Jauffret E, Jacquemier J, Spicuglia S, de The H, Viens P, Bertucci F, Birnbaum D, Chaffanet M (2014) Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PLoS One 9(1):e81843. doi:10.1371/journal.pone.0081843

    Article  PubMed Central  PubMed  Google Scholar 

  20. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, Senn HJ, Panel members (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24(9):2206–2223. doi:10.1093/annonc/mdt303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Varley KE, Mitra RD (2010) Bisulfite patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Res 20(9):1279–1287. doi:10.1101/gr.101212.109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Flanagan JM, Cocciardi S, Waddell N, Johnstone CN, Marsh A, Henderson S, Simpson P, da Silva L, kConFab Investigators, Khanna K, Lakhani S, Boshoff C, Chenevix-Trench G (2010) DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am J Hum Genet 86(3):420–433. doi:10.1016/j.ajhg.2010.02.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    Google Scholar 

  24. Hollants S, Redeker EJ, Matthijs G (2012) Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Clin Chem 58(4):717–724. doi:10.1373/clinchem.2011.173963

    Article  CAS  PubMed  Google Scholar 

  25. Bourgon R, Lu S, Yan Y, Lackner MR, Wang W, Weigman V, Wang D, Guan Y, Ryner L, Koeppen H, Patel R, Hampton GM, Amler LC, Wang Y (2014) High-throughput detection of clinically relevant mutations in archived tumor samples by multiplexed PCR and next-generation sequencing. Clin Cancer Res 20(8):2080–2091. doi:10.1158/1078-0432.CCR-13-3114

    Article  CAS  PubMed  Google Scholar 

  26. Klajic J, Fleischer T, Dejeux E, Edvardsen H, Warnberg F, Bukholm I, Lonning PE, Solvang H, Borresen-Dale AL, Tost J, Kristensen VN (2013) Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors. BMC Cancer 13:456. doi:10.1186/1471-2407-13-456

    Article  PubMed Central  PubMed  Google Scholar 

  27. Heyn H, Moran S, Hernando-Herraez I, Sayols S, Gomez A, Sandoval J, Monk D, Hata K, Marques-Bonet T, Wang L, Esteller M (2013) DNA methylation contributes to natural human variation. Genome Res 23(9):1363–1372. doi:10.1101/gr.154187.112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Xia YY, Ding YB, Liu XQ, Chen XM, Cheng SQ, Li LB, Ma MF, He JL (1846) Wang YX (2014) Racial/ethnic disparities in human DNA methylation. Biochim Biophys Acta 1:258–262. doi:10.1016/j.bbcan.2014.07.001

    Google Scholar 

  29. Ambrosone CB, Young AC, Sucheston LE, Wang D, Yan L, Liu S, Tang L, Hu Q, Freudenheim JL, Shields PG, Morrison CD, Demissie K, Higgins MJ (2014) Genome-wide methylation patterns provide insight into differences in breast tumor biology between American women of African and European ancestry. Oncotarget 5(1):237–248

    PubMed Central  PubMed  Google Scholar 

  30. Radpour R, Kohler C, Haghighi MM, Fan AX, Holzgreve W, Zhong XY (2009) Methylation profiles of 22 candidate genes in breast cancer using high-throughput MALDI-TOF mass array. Oncogene 28(33):2969–2978. doi:10.1038/onc.2009.149

    Article  CAS  PubMed  Google Scholar 

  31. Hartmann O, Spyratos F, Harbeck N, Dietrich D, Fassbender A, Schmitt M, Eppenberger-Castori S, Vuaroqueaux V, Lerebours F, Welzel K, Maier S, Plum A, Niemann S, Foekens JA, Lesche R, Martens JW (2009) DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin Cancer Res 15(1):315–323. doi:10.1158/1078-0432.CCR-08-0166

    Article  CAS  PubMed  Google Scholar 

  32. Wojdacz TK, Windelov JA, Thestrup BB, Damsgaard TE, Overgaard J, Hansen L (2014) Identification and characterization of locus-specific methylation patterns within novel loci undergoing hypermethylation during breast cancer pathogenesis. Breast Cancer Res 16(1):R17. doi:10.1186/bcr3612

    Article  PubMed Central  PubMed  Google Scholar 

  33. Twelves D, Nerurkar A, Osin P, Dexter T, Ward A, Gui GP, Isacke CM (2013) DNA promoter hypermethylation profiles in breast duct fluid. Breast Cancer Res Treat 139(2):341–350. doi:10.1007/s10549-013-2544-8

    Article  CAS  PubMed  Google Scholar 

  34. Bardowell SA, Parker J, Fan C, Crandell J, Perou CM, Swift-Scanlan T (2013) Differential methylation relative to breast cancer subtype and matched normal tissue reveals distinct patterns. Breast Cancer Res Treat 142(2):365–380. doi:10.1007/s10549-013-2738-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, kConFab, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Med 15(8):907–913. doi:10.1038/nm.2000

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Lee KM, Han W, Choi JY, Lee JY, Kang GH, Park SK, Noh DY, Yoo KY, Kang D (2010) Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet 19(21):4273–4277. doi:10.1093/hmg/ddq351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Natural Science Foundation of China (No. 81272296), the Scientific Project of China Hunan Provincial Science and Technology Department (No. 2012SK2013), and the Major Special Projects of the Science and Technology Bureau of Changsha, China (Nos. K1204017-31 and K1306011-31). Zibo Li was supported by the Hunan Province Postgraduate Student Scientific Innovation Project, China (No. CX2013B087).

Ethical standards

We declare that the experiments performed in this study comply with the current laws of the People’s Republic of China.

Conflict of interest

Xingwu Guo, Limin Peng, Zhongping Deng, and Lizhong Dai are employees of Sanway Gene Technology Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Tang or Jun Wang.

Additional information

Zibo Li, Xinwu Guo and Yepeng Wu have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Guo, X., Wu, Y. et al. Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients. Breast Cancer Res Treat 149, 767–779 (2015). https://doi.org/10.1007/s10549-015-3276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3276-8

Keywords

Navigation