Skip to main content

Advertisement

Log in

Rab11a sustains GSK3β/Wnt/β-catenin signaling to enhance cancer progression in pancreatic cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

The Rab family GTPases regulate many major biological processes during tumor progression such as cell proliferation, cytoskeleton organization, cell movement, and invasion. The present study aims to examine the clinical significance, biological roles, and molecular mechanism of Rab11a in pancreatic cancer progression. We examined expression pattern of Rab11a in 96 cases of pancreatic cancer specimens using immunohistochemistry and found Rab11a overexpression correlated with tumor-node-metastasis (TNM) stage (p = 0.0111). We depleted Rab11a in Bxpc3 cells using small interfering RNA (siRNA) and overexpressed Rab11a in Capan2 cells. Knockdown of Rab11a inhibited cell growth, invasion, and cell cycle progression while its overexpression facilitated cell growth, invasion, and cell cycle progression. In addition, Rab11a overexpression increased gemcitabine resistance and inhibited gemcitabine-induced apoptosis in Capan2 cells while its depletion reduced drug resistance. We investigated the role of Rab11a in the regulation of Wnt/β-catenin signaling and we demonstrated that Rab11a overexpression upregulated GSK3β phosphorylation and nuclear β-catenin accumulation. Rab11a depletion inhibited while its overexpression enhanced β-catenin/T-cell factor (TCF) transcriptional activity with corresponding change of Wnt target genes including cyclin D1, cyclin E, MMP7, and c-myc. Wnt inhibitor (FH535) partly attenuated the effects of Rab11a on cell proliferation and Wnt target genes. In conclusion, the present study demonstrated that Rab11a promotes aggressiveness of pancreatic cancer through GSK3β/Wnt/β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Kessler D, Gruen GC, Heider D, Morgner J, Reis H, Schmid KW, et al. The action of small GTPases Rab11 and Rab25 in vesicle trafficking during cell migration. Cell Physiol Biochem. 2012;29(5–6):647–56.

    Article  CAS  PubMed  Google Scholar 

  3. Ramel D, Wang X, Laflamme C, Montell DJ, Emery G. Rab11 regulates cell-cell communication during collective cell movements. Nat Cell Biol. 2013;15(3):317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hehnly H, Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev Cell. 2014;28(5):497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelly EE, Horgan CP, McCaffrey MW. Rab11 proteins in health and disease. Biochem Soc Trans. 2012;40(6):1360–7.

    Article  CAS  PubMed  Google Scholar 

  6. Desclozeaux M, Venturato J, Wylie FG, Kay JG, Joseph SR, Le HT, et al. Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Phys Cell Physiol. 2008;295(2):C545–56.

    Article  CAS  Google Scholar 

  7. Palmieri D, Bouadis A, Ronchetti R, Merino MJ, Steeg PS. Rab11a differentially modulates epidermal growth factor-induced proliferation and motility in immortal breast cells. Breast Cancer Res Treat. 2006;100(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  8. Kazemi-Noureini S, Colonna-Romano S, Ziaee AA, Malboobi MA, Yazdanbod M, Setayeshgar P, et al. Differential gene expression between squamous cell carcinoma of esophageus and its normal epithelium; altered pattern of mal, akr1c2, and rab11a expression. World J Gastroenterol. 2004;10(12):1716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chung YC, Wei WC, Huang SH, Shih CM, Hsu CP, Chang KJ, et al. Rab11 regulates E-cadherin expression and induces cell transformation in colorectal carcinoma. BMC Cancer. 2014;14:587.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kornmann M, Ishiwata T, Itakura J, Tangvoranuntakul P, Beger HG, Korc M. Increased cyclin D1 in human pancreatic cancer is associated with decreased postoperative survival. Oncology. 1998;55(4):363–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kornmann M, Arber N, Korc M. Inhibition of basal and mitogen-stimulated pancreatic cancer cell growth by cyclin D1 antisense is associated with loss of tumorigenicity and potentiation of cytotoxicity to cisplatinum. J Clin Invest. 1998;101(2):344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin CJ, Malina A, Pelletier J. c-Myc and eIF4F constitute a feedforward loop that regulates cell growth: implications for anticancer therapy. Cancer Res. 2009;69(19):7491–4.

    Article  CAS  PubMed  Google Scholar 

  13. Shukla SK, Gunda V, Abrego J, Haridas D, Mishra A, Souchek J, et al. MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. Oncotarget. 2015;6(22):19118–31.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Koenig A, Linhart T, Schlengemann K, Reutlinger K, Wegele J, Adler G, et al. NFAT-induced histone acetylation relay switch promotes c-Myc-dependent growth in pancreatic cancer cells. Gastroenterology. 2010;138(3):1189–99 .e1-2

    Article  PubMed  Google Scholar 

  15. Kumar K, Raza SS, Knab LM, Chow CR, Kwok B, Bentrem DJ, et al. GLI2-dependent c-MYC upregulation mediates resistance of pancreatic cancer cells to the BET bromodomain inhibitor JQ1. Sci Rep. 2015;5:9489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim DY, Kim MJ, Kim HB, Lee JW, Bae JH, Kim DW, et al. Suppression of multidrug resistance by treatment with TRAIL in human ovarian and breast cancer cells with high level of c-Myc. Biochim Biophys Acta. 2011;1812(7):796–805.

    Article  CAS  PubMed  Google Scholar 

  17. McNeil CM, Sergio CM, Anderson LR, Inman CK, Eggleton SA, Murphy NC, et al. c-Myc overexpression and endocrine resistance in breast cancer. J Steroid Biochem Mol Biol. 2006;102(1–5):147–55.

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Heidt DG, Lee CJ, Yang H, Logsdon CD, Zhang L, et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and beta-catenin stabilization. Cancer Cell. 2009;15(3):207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pilarsky C, Ammerpohl O, Sipos B, Dahl E, Hartmann A, Wellmann A, et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J Cell Mol Med. 2008;12(6B):2823–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou W, Li Y, Gou S, Xiong J, Wu H, Wang C, et al. MiR-744 increases tumorigenicity of pancreatic cancer by activating Wnt/beta-catenin pathway. Oncotarget. 2015;6(35):37557–69.

    PubMed  PubMed Central  Google Scholar 

  21. Wang B, Zou Q, Sun M, Chen J, Wang T, Bai Y, et al. Reversion of trichostatin A resistance via inhibition of the Wnt signaling pathway in human pancreatic cancer cells. Oncol Rep. 2014;32(5):2015–22.

    CAS  PubMed  Google Scholar 

  22. Cui J, Jiang W, Wang S, Wang L, Xie K. Role of Wnt/beta-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des. 2012;18(17):2464–71.

    Article  CAS  PubMed  Google Scholar 

  23. Benelli R, Monteghirfo S, Vene R, Tosetti F, Ferrari N. The chemopreventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability. Mol Cancer. 2010;9:142.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luo J. Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009;273(2):194–200.

    Article  CAS  PubMed  Google Scholar 

  25. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8(12):1398–406.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by China NSFC project (no. 31371177) and Health and Family Planning Commission of Liaoning project Province (LNCCC-D31-2015).We thank Dr. Yang Wang and Dr. Yang Liu for IHC evaluation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Yu or Hua Liu.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Li, X., Li, H. et al. Rab11a sustains GSK3β/Wnt/β-catenin signaling to enhance cancer progression in pancreatic cancer. Tumor Biol. 37, 13821–13829 (2016). https://doi.org/10.1007/s13277-016-5172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5172-1

Keywords

Navigation