Skip to main content

Advertisement

Log in

Rab11a Differentially Modulates Epidermal Growth Factor-induced Proliferation and Motility in Immortal Breast Cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The development of cancer prevention strategies depends on the elucidation of molecular pathways underlying oncogenesis. In a previous proteomic study of matched normal breast ducts and Ductal Carcinoma in Situ (DCIS), we identified overexpression of Rab11a in DCIS. Rab11a is not well studied in cancer, but is known to regulate the recycling of internalized cell surface proteins and receptors from the early endosome through the trans-Golgi network. Using immunohistochemistry, we confirmed our observation, noting increased Rab11a expression in 19 of 22 (86%) DCIS cases compared to matched normal breast epithelium. To study the function of Rab11a, immortal, nontumorigenic MCF10A breast cells were stimulated with ligands to the EGF receptor (EGFR) after transfection with empty vector (control), Rab11a, or a S25N dominant-negative (DN) Rab11a. Using an iodinated ligand:receptor recycling assay, transfection of Rab11a accelerated, while DN-Rab11a postponed EGFR recycling in vitro. The signaling and in vitro phenotypic consequences of Rab11a expression and function were studied. Transfection of DN-Rab11a increased Erk1/2 activation downstream of EGF, but exerted no effect on the Akt pathway. Expression of DN-Rab11a inhibited MCF10A proliferation by 50–60%, and also inhibited anchorage-dependent colonization. Notably, DN-Rab11a transfection increased motility toward EGFR ligands. The data provide a first demonstration that Rab11a modulates EGFR recycling, and promotes the proliferation but inhibits the motility of an immortal breast line, consistent with the DCIS phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fabian C, Kimler B (2005) Selective estrogen-receptor modulators for primary prevention of breast cancer. J Clin Oncol 23:1644–1655

    Article  PubMed  CAS  Google Scholar 

  2. Narod S, Offit K (2005) Prevention and management of hereditary breast cancer. J Clin Oncol 23:1656–1663

    Article  PubMed  Google Scholar 

  3. Sabichi A, Demierre M, Hawk E, Lerman C, Lippman S (2003) Frontiers in cancer prevention research. Cancer Res 63:5649–5655

    PubMed  CAS  Google Scholar 

  4. Brown P, Lippman S (2000) Chemoprevention of breast cancer. Breast Cancer Res Treat 62:1–17

    Article  PubMed  CAS  Google Scholar 

  5. Weinstat-Saslow D, Merino MJ, Manrow RE, Lawrence JA, Bluth RF, Wittenbel KD, Simpson JF, Page DL, Steeg PS (1995) Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1:1257–1260

    Article  PubMed  CAS  Google Scholar 

  6. Zhou Q, Stetler-Stevenson M, Steeg PS (1997) Inhibition of cyclin D expression in human breast carcinoma cells by retinoids in vitro. Oncogene 15:107–115

    Article  PubMed  CAS  Google Scholar 

  7. Wulfkuhle JD, Sgroi DC, Krutzsch H, McLean K, McGarvey K, Knowlton M, Chen S, Shu H, Sahin A, Kurek R et al (2002) Proteomics of human breast ductal carcinoma in situ. Cancer Res 62:6740–6749

    PubMed  CAS  Google Scholar 

  8. Leonard GD, Swain SM (2004) Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst 96:906–920

    Article  PubMed  Google Scholar 

  9. Bartz R, Benzing C, Ullrich O (2003) Reconstitution of vesicular transport to Rab11-positive recycling endosomes in vitro. Biochem Biophys Res Commun 312:663–669

    Article  PubMed  CAS  Google Scholar 

  10. Powelka AM, Sun J, Li J, Gao M, Shaw LM, Sonnenberg A, Hsu VW (2004) Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic 5:20–36

    Article  PubMed  CAS  Google Scholar 

  11. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  12. Renzis SD, Sonnichsen B, Zerial M (2002) Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nat Cell Biol 4:124–133

    Article  PubMed  CAS  Google Scholar 

  13. Zeng J, Ren M, Gravotta D, DeLemos-Chiarandini C, Lui M, Erdjument-Bromage H, Tempst P, Xu G, Shen T, Morimoto T et al (1999) Identification of a putative effector protein for rab11 that participates in transferrin recycling. J Biol Chem 96:2840–2845

    CAS  Google Scholar 

  14. Prekeris R, Davies JM, Scheller RH (2001) Identification of a novel Rab11/25 binding domain present in Eferin and Rip proteins. J Biol Chem 276:38966–38970

    Article  PubMed  CAS  Google Scholar 

  15. Mammoto A, Ohtsuka T, Hotta I, Sasaki T, Takai Y (1999) Rab11BP/Rabphilin-11, a downstream target of rab11 small G protein implicated in vesicle recycling. J Biol Chem 274:25517–25524

    Article  PubMed  CAS  Google Scholar 

  16. Cullis DN, Philip B, Baleja JD, Feig LA (2002) Rab11-FIP2, an adaptor protein connecting cellular components involved in internalization and recycling of epidermal growth factor receptors. J Biol Chem 277:49158–49166

    Article  PubMed  CAS  Google Scholar 

  17. Hales CM, Griner R, Hobdy-Henderson KC, Dorn MC, Hardy D, Kumar R, Navarre J, Chan EK, Lapierre LA, Goldenring JR (2001) Identification and characterization of a family of Rab11-interacting proteins. J Biol Chem 276:39067–39075

    Article  PubMed  CAS  Google Scholar 

  18. Meyers JM, Prekeris R (2002) Formation of mutually exclusive Rab11 complexes with members of the family of Rab11-interacting proteins regulates Rab11 endocytic targeting and function. J Biol Chem 277:49003–49010

    Article  PubMed  CAS  Google Scholar 

  19. Haugh JM, Schooler K, Wells A, Wiley HS, Lauffenburger DA (1999) Effect of epidermal growth factor receptor internalization on regulation of the phospholipase C-gamma1 signaling pathway. J Biol Chem 274:8958–8965

    Article  PubMed  CAS  Google Scholar 

  20. Ren M, Xu G, Zeng J, De Lemos-Chiarandini C, Adesnik M, Sabatini DD (1998) Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc Natl Acad Sci USA 95:6187–6192

    Article  PubMed  CAS  Google Scholar 

  21. Wilcke M, Johannes L, Galli T, Mayau V, Goud B, Salamero J (2000) Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol 151:1207–1220

    Article  PubMed  CAS  Google Scholar 

  22. Mitchell H, Choudhury A, Pagano RE, Leof EB (2004) Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 15:4166–4178

    Article  PubMed  CAS  Google Scholar 

  23. Kessler A, Tomas E, Immler D, Meyer HE, Zorzano A, Eckel J (2000) Rab11 is associated with GLUT4-containing vesicles and redistributes in response to insulin. Diabetologia 43:1518–1527

    Article  PubMed  CAS  Google Scholar 

  24. Moore RH, Millman EE, Alpizar-Foster E, Dai W, Knoll BJ (2004) Rab11 regulates the recycling and lysosome targeting of beta2-adrenergic receptors. J Cell Sci 117:3107–3117

    Article  PubMed  CAS  Google Scholar 

  25. Hamelin E, Theriault C, Laroche G, Parent JL (2005) The intracellular trafficking of the G protein-coupled receptor TPbeta depends on a direct interaction with Rab11. J Biol Chem 280:36195–36205

    Article  PubMed  CAS  Google Scholar 

  26. Yoon S-O, Shin S, Mercurio A (2005) Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting Rab11 trafficking of the a6b4 integrin. Cancer Res 65:2761–2769

    Article  PubMed  CAS  Google Scholar 

  27. Lock J, Stow J (2005) Rab11 in recylcing endosomes regulates the sorting and basolateral transport of E-cadherin. Mol Biol Cell 16:1744–1755

    Article  PubMed  CAS  Google Scholar 

  28. Lock JG, Stow JL (2005) Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol Biol Cell 16:1744–1755

    Article  PubMed  CAS  Google Scholar 

  29. Fan GH, Lapierre LA, Goldenring JR, Richmond A (2003) Differential regulation of CXCR2 trafficking by Rab GTPases. Blood 101:2115–2124

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Y, Foudi A, Geay JF, Berthebaud M, Buet D, Jarrier P, Jalil A, Vainchenker W, Louache F (2004) Intracellular localization and constitutive endocytosis of CXCR4 in human CD34+ hematopoietic progenitor cells. Stem Cells 22:1015–1029

    Article  PubMed  CAS  Google Scholar 

  31. Alone DP, Tiwari AK, Mandal L, Li M, Mechler BM, Roy JK (2005) Rab11 is required during Drosophila eye development. Int J Dev Biol 49:873–879

    Article  PubMed  CAS  Google Scholar 

  32. Emery G, Hutterer A, Berdnik D, Mayer B, Wirtz-Peitz F, Gaitan MG, Knoblich JA (2005) Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell 122:763–773

    Article  PubMed  CAS  Google Scholar 

  33. Yoon SO, Shin S, Mercurio AM (2005) Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 65:2761–2769

    Article  PubMed  CAS  Google Scholar 

  34. Miller FR, Soule HD, Tait L, Pauley RJ, Wolman SR, Dawson PJ, Heppner GH (1993) Xenograft model of progressive human proliferative breast disease. J Natl Cancer Inst 85:1725–1732

    PubMed  CAS  Google Scholar 

  35. Kornilova E, Sorkina T, Beguinot L, Sorkin A (1996) Lysosomal targeting of epidermal growth factor receptors via a kinase-dependent pathway is mediated by the receptor carboxyl-terminal residues 1022–1123. J Biol Chem 271:30340–30346

    Article  PubMed  CAS  Google Scholar 

  36. Stuelten C, Byfield S, Arany P, Karpova T, Stetler-Stevenson W, Roberts A (2005) Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118:2143–2153

    Google Scholar 

  37. Sum E, Segara D, Duscio B, Bath M, Field A, Sutherland R, Lindeman G, Visvader J (2005) Overexpression of LMO4 induced mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer. Proc Natl Acad Sci USA 102:7659–7664

    Article  PubMed  CAS  Google Scholar 

  38. You F, Chiba N, Ishioka C, Parvin J (2004) Expression of an amino-terminal BRCA1 deletion mutant causes a dominant growth inhibition in MCF10A cells. Oncogene 23: 5792–5798

    Article  PubMed  CAS  Google Scholar 

  39. Sorkin A, Krolenko S, Kudrjavtceva N, Lazebnik J, Teslenko L, Soderquist AM, Nikolsky N (1991) Recycling of epidermal growth factor-receptor complexes in A431 cells: identification of dual pathways. J Cell Biol 112:55–63

    Article  PubMed  CAS  Google Scholar 

  40. French AR, Tadaki DK, Niyogi SK, Lauffenburger DA (1995) Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J Biol Chem 270:4334–4340

    Article  PubMed  CAS  Google Scholar 

  41. Waterman H, Sabanai I, Geiger B, Yarden Y (1998) Alternative intracellular routing of ErbB receptors may determine signaling potency. J Biol Chem 273:13819–13827

    Article  PubMed  CAS  Google Scholar 

  42. Xie J, Qian L, Wang Y, Rose CM, Yang T, Nakamura T, Hamm-Alvarez SF, Mircheff AK (2004) Novel biphasic traffic of endocytosed EGF to recycling and degradative compartments in lacrimal gland acinar cells. J Cell Physiol 199:108–125

    Article  PubMed  CAS  Google Scholar 

  43. Goldenring JR, Ray GS, Lee JR (1999) Rab11 in dysplasia of Barrett’s epithelia. Yale J Biol Med 72:113–120

    PubMed  CAS  Google Scholar 

  44. Sorkin A, Teslenko L, Nikolsky N (1988) The endocytosis of epidermal growth factor in A431 cells: a pH microenvironment and the dynamics of receptor complexes dissociation. Exp Cell Res 175:192–205

    Article  PubMed  CAS  Google Scholar 

  45. McKanna J, Haigler H, Cohen S (1979) Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor. Proc Natl Acad Sci USA 76:5689–5693

    Article  PubMed  CAS  Google Scholar 

  46. Carpentier J-L, White M, Orci L, Kahn R (1987) Direct visualization of the phosphorylated epidermal growth factor receptor during its internalization in A-431 cells. J Cell Biol 105:2751–2762

    Article  PubMed  CAS  Google Scholar 

  47. Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmuller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N, Peters C (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118:3387–3395

    Article  PubMed  CAS  Google Scholar 

  48. Uhlig M, Passlack W, Eckel J (2005) Functional role of Rab11 in GLUT4 trafficking in cardiomyocytes. Mol Cell Endocrinol 235:1–9

    Article  PubMed  CAS  Google Scholar 

  49. Pennock S, Wang Z (2003) Stimulation of cell proliferation by endosomal epidermal growth factor receptor as revealed through two distinct phases of signaling. Mol Cell Biol 23:5803–5815

    Article  PubMed  CAS  Google Scholar 

  50. Skarpen E, Johannessen LE, Bjerk K, Fasteng H, Guren TK, Lindeman B, Thoresen GH, Christoffersen T, Stang E, Huitfeldt HS et al (1998) Endocytosed epidermal growth factor (EGF) receptors contribute to the EGF-mediated growth arrest in A431 cells by inducing a sustained increase in p21/CIP1. Exp Cell Res 243:161–172

    Article  PubMed  CAS  Google Scholar 

  51. Soule HD, Maloney TM, Wolman SR, Peterson WD Jr., Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086

    PubMed  CAS  Google Scholar 

  52. Howe LR, Chang SH, Tolle KC, Dillon R, Young LJ, Cardiff RD, Newman RA, Yang P, Thaler HT, Muller WJ et al (2005) HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res 65:10113–10119

    Article  PubMed  CAS  Google Scholar 

  53. Schulze-Garg C, Lohler J, Gocht A, Deppert W (2000) A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland. Oncogene 19:1028–1037

    Article  PubMed  CAS  Google Scholar 

  54. Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR, Wigginton J, Wiltrout R, Shibata E, Kaczmarczyk S et al (2000) The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19:1020–1027

    Article  PubMed  CAS  Google Scholar 

  55. Roovers K, Assoian R (2000) Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 22:818–826

    Article  PubMed  CAS  Google Scholar 

  56. Agell N, Bachs O, Rocamora N, Villalonga P (2002) Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+ and calmodulin. Cell Signall 14:649–654

    Article  CAS  Google Scholar 

  57. Luttrell L (2005) Composition and function of G-protein coupled receptor signalsomes controlling mitogen-activated protein kinase activity. J Mol Neurosci 26:253–263

    Article  PubMed  CAS  Google Scholar 

  58. MacKeigan J, Murphy L, Dimitri C, Blenis J (2005) Graded mitogen-activated protein kinase activity precedes switch-like c-fos induction in mammalian cells. Mol Cell Biol 25:4676–4682

    Article  PubMed  CAS  Google Scholar 

  59. Whitehurst A, Cobb M, White M (2004) Stimulus-coupled spatial restriction of extracellular signal-regulated kinase 1/2 activity contributes to the specificity of signal-response pathways. Mol Cell Biol 24:10145–10150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Palmieri.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmieri, D., Bouadis, A., Ronchetti, R. et al. Rab11a Differentially Modulates Epidermal Growth Factor-induced Proliferation and Motility in Immortal Breast Cells. Breast Cancer Res Treat 100, 127–137 (2006). https://doi.org/10.1007/s10549-006-9244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9244-6

Keywords

Navigation