Skip to main content

Advertisement

Log in

Biological characteristics of a novel giant cell tumor cell line derived from spine

  • Original Article
  • Published:
Tumor Biology

Abstract

Giant cell tumor of bone(GCTB) is a special bone tumor for it consists of various cell types, and its biological characteristics is different from common benign or malignant neoplasm. In the present study, we report the biological features of a primary Asian GCTB cell line named GCTB28. We analyzed extensive properties of the GCTB28 cells including morphological observations, growth, cell cycle, karyotype, proliferation, proteins expression, surface biomarker verification, and tumorigenicity in nude mice. We found that the stromal cells of GCTB were endowed with self-renewal capacity and played dominant roles in GCTB development. Moreover, we confirmed that GCTB cells can be CD33CD14 phenotype which was not in accord with previous study. This study provides an in vitro model system to investigate pathogenic mechanisms and molecular characteristics of GCTB and also provides a useful tool for researching the therapeutic targeting of GCTB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhurgri Y, Usman A, Bhurgri H, Faridi N, Bashir I, Bhurgri A, et al. Primary malignancies of bone and cartilage in Karachi. Asian Pac J Cancer Prev : APJCP. 2009;10(5):891–4.

    PubMed  Google Scholar 

  2. Saikia KC, Bhuyan SK, Borgohain M, Saikia SP, Bora A, Ahmed F. Giant cell tumour of bone: an analysis of 139 Indian patients. J Orthop Sci : Off J Jpn Orthop Assoc. 2011;16(5):581–8. doi:10.1007/s00776-011-0033-7.

    Article  Google Scholar 

  3. Puri A, Agarwal MG, Shah M, Jambhekar NA, Anchan C, Behle S. Giant cell tumor of bone in children and adolescents. J Pediatr Orthop. 2007;27(6):635–9. doi:10.1097/BPO.0b013e3181425629.

    Article  PubMed  Google Scholar 

  4. Rajani R, Schaefer L, Scarborough MT, Gibbs CP. Giant cell tumors of the foot and ankle bones: high recurrence rates after surgical treatment. J Foot Ankle Surg : Off Publ Am Coll Foot Ankle Surg. 2014. doi:10.1053/j.jfas.2014.08.016.

    Google Scholar 

  5. Abat F, Almenara M, Peiro A, Trullols L, Bague S, Gracia I. Giant cell tumour of bone: a series of 97 cases with a mean follow-up of 12 years. Revista espanola de cirugia ortopedica y traumatologia. 2015;59(1):59–65. doi:10.1016/j.recot.2014.06.005.

    Article  CAS  PubMed  Google Scholar 

  6. Shen CC, Li H, Shi ZL, Tao HM, Yang ZM. Current treatment of sacral giant cell tumour of bone: a review. J Int Med Res. 2012;40(2):415–25.

    Article  CAS  PubMed  Google Scholar 

  7. Huang TS, Green AD, Beattie CW, Das Gupta TK. Monocyte-macrophage lineage of giant cell tumor of bone. Establishment of a multinucleated cell line. Cancer. 1993;71(5):1751–60.

    Article  CAS  PubMed  Google Scholar 

  8. Kito M, Moriya H, Mikata A, Harigaya K, Takenouchi T, Takada N, et al. Establishment of a cell line from a human giant cell tumor of bone. Clin Orthop Relat Res. 1993;294:353–60.

    Google Scholar 

  9. Werner M. Giant cell tumour of bone: morphological, biological and histogenetical aspects. Int Orthop. 2006;30(6):484–9. doi:10.1007/s00264-006-0215-7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chakarun CJ, Forrester DM, Gottsegen CJ, Patel DB, White EA, Matcuk Jr GR. Giant cell tumor of bone: review, mimics, and new developments in treatment. Radiographics : Rev Publ Radiol Soc North Am Inc. 2013;33(1):197–211. doi:10.1148/rg.331125089.

    Article  Google Scholar 

  11. Raskin KA, Schwab JH, Mankin HJ, Springfield DS, Hornicek FJ. Giant cell tumor of bone. J Am Acad Orthop Surg. 2013;21(2):118–26. doi:10.5435/jaaos-21-02-118.

    Article  PubMed  Google Scholar 

  12. Cowan RW, Singh G. Giant cell tumor of bone: a basic science perspective. Bone. 2013;52(1):238–46. doi:10.1016/j.bone.2012.10.002.

    Article  PubMed  Google Scholar 

  13. Yeo CD, Roh SY, Shin OR, Bahk WJ, Kim KH, Kim JW. A case of pulmonary metastasis of giant cell tumor of bone presenting as pulmonary arteriovenous malformation. J Formos Med Assoc = Taiwan yi zhi. 2015;114(4):369–72. doi:10.1016/j.jfma.2012.03.014.

    Article  PubMed  Google Scholar 

  14. Chan CM, Adler Z, Reith JD, Gibbs Jr CP. Risk factors for pulmonary metastases from giant cell tumor of bone. J Bone Joint Surg Am Vol. 2015;97(5):420–8. doi:10.2106/jbjs.n.00678.

    Article  Google Scholar 

  15. Goldenberg RR, Campbell CJ, Bonfiglio M. Giant-cell tumor of bone. An analysis of two hundred and eighteen cases. J Bone Joint Surg Am Vol. 1970;52(4):619–64.

    Article  CAS  Google Scholar 

  16. Campanacci M, Baldini N, Boriani S, Sudanese A. Giant-cell tumor of bone. J Bone Joint Surg Am Vol. 1987;69(1):106–14.

    Article  CAS  Google Scholar 

  17. Goldring SR, Roelke MS, Petrison KK, Bhan AK. Human giant cell tumors of bone identification and characterization of cell types. J Clin Invest. 1987;79(2):483–91. doi:10.1172/jci112838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song ZB, Ni JS, Wu P, Bao YL, Liu T, Li M, et al. Testes-specific protease 50 promotes cell invasion and metastasis by increasing NF-kappaB-dependent matrix metalloproteinase-9 expression. Cell Death Dis. 2015;6:e1703. doi:10.1038/cddis.2015.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akter H, Park M, Kwon OS, Song EJ, Park WS, Kang MJ. Activation of matrix metalloproteinase-9 (MMP-9) by neurotensin promotes cell invasion and migration through ERK pathway in gastric cancer. Tumour Biol : J Int Soc Oncodev Biol Med. 2015. doi:10.1007/s13277-015-3282-9.

    Google Scholar 

  20. Liu Y, Liu H, Luo X, Deng J, Pan Y, Liang H. Overexpression of SMYD3 and matrix metalloproteinase-9 are associated with poor prognosis of patients with gastric cancer. Tumour Biol : J Int Soc Oncodev Biol Med. 2015. doi:10.1007/s13277-015-3077-z.

    Google Scholar 

  21. Tamamura R, Nagatsuka H, Siar CH, Katase N, Naito I, Sado Y, et al. Comparative analysis of basal lamina type IV collagen alpha chains, matrix metalloproteinases-2 and -9 expressions in oral dysplasia and invasive carcinoma. Acta Histochem. 2013;115(2):113–9. doi:10.1016/j.acthis.2012.05.001.

    Article  CAS  PubMed  Google Scholar 

  22. Xia Z, Liu W, Li S, Jia G, Zhang Y, Li C, et al. Expression of matrix metalloproteinase-9, type IV collagen and vascular endothelial growth factor in adamantinous craniopharyngioma. Neurochem Res. 2011;36(12):2346–51. doi:10.1007/s11064-011-0560-9.

    Article  CAS  PubMed  Google Scholar 

  23. Cao XL, Xu RJ, Zheng YY, Liu J, Teng YS, Li Y, et al. Expression of type IV collagen, metalloproteinase-2, metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in laryngeal squamous cell carcinomas. Asian Pac J Cancer Prev : APJCP. 2011;12(12):3245–9.

    PubMed  Google Scholar 

  24. Xu XH, Pan W, Kang LH, Feng H, Song YQ. Association of annexin A2 with cancer development (Review). Oncol Rep. 2015;33(5):2121–8. doi:10.3892/or.2015.3837.

    CAS  PubMed  Google Scholar 

  25. Wang CY, Lin CF. Annexin A2: its molecular regulation and cellular expression in cancer development. Dis Markers. 2014;2014:308976. doi:10.1155/2014/308976.

    PubMed  PubMed Central  Google Scholar 

  26. Sharma MC, Sharma M. The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr Pharm Des. 2007;13(35):3568–75.

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Ma D, Jing X, Wang B, Yang W, Qiu W. Overexpression of ANXA2 predicts adverse outcomes of patients with malignant tumors: a systematic review and meta-analysis. Med Oncol (Northwood, London, England). 2015;32(1):392. doi:10.1007/s12032-014-0392-y.

    Article  Google Scholar 

  28. Leal MF, Calcagno DQ, Chung J, de Freitas VM, Demachki S, Assumpcao PP, et al. Deregulated expression of annexin-A2 and galectin-3 is associated with metastasis in gastric cancer patients. Clin Exp Med. 2014. doi:10.1007/s10238-014-0299-0.

    Google Scholar 

  29. Ma RL, Shen LY, Chen KN. Coexpression of ANXA2, SOD2 and HOXA13 predicts poor prognosis of esophageal squamous cell carcinoma. Oncol Rep. 2014;31(5):2157–64. doi:10.3892/or.2014.3088.

    CAS  PubMed  Google Scholar 

  30. Zhai H, Acharya S, Gravanis I, Mehmood S, Seidman RJ, Shroyer KR, et al. Annexin A2 promotes glioma cell invasion and tumor progression. J Neurosci : Off J Soc Neurosci. 2011;31(40):14346–60. doi:10.1523/jneurosci.3299-11.2011.

    Article  CAS  Google Scholar 

  31. Zhang W, Zhao P, Xu XL, Cai L, Song ZS, Cao DY, et al. Annexin A2 promotes the migration and invasion of human hepatocellular carcinoma cells in vitro by regulating the shedding of CD147-harboring microvesicles from tumor cells. PLoS One. 2013;8(8):e67268. doi:10.1371/journal.pone.0067268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng S, Jing B, Xing T, Hou L, Yang Z. Overexpression of annexin A2 is associated with abnormal ubiquitination in breast cancer. Genomics Proteomics Bioinformatics. 2012;10(3):153–7. doi:10.1016/j.gpb.2011.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang J, Yang F, Nie J, Zou X, Tian H, Qin Y, et al. Evaluation of Annexin A2 as a novel diagnostic serum biomarker for lung cancer. Cancer Biomark : Section A Dis Markers. 2015;15(2):211–7. doi:10.3233/cbm-140455.

    Article  Google Scholar 

  34. Emoto K, Yamada Y, Sawada H, Fujimoto H, Ueno M, Takayama T, et al. Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer. 2001;92(6):1419–26.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Wang Z, Jiang M, Dai L, Zhang W, Wu D, et al. The expression of annexin II and its role in the fibrinolytic activity in acute promyelocytic leukemia. Leuk Res. 2011;35(7):879–84. doi:10.1016/j.leukres.2010.11.008.

    Article  CAS  PubMed  Google Scholar 

  36. Huang YK, Liu H, Wang XZ, Zhu S. Annexin A2 and CD105 expression in pancreatic ductal adenocarcinoma is associated with tumor recurrence and prognosis. Asian Pac J Cancer Prev : APJCP. 2014;15(22):9921–6.

    Article  PubMed  Google Scholar 

  37. Ohno Y, Izumi M, Kawamura T, Nishimura T, Mukai K, Tachibana M. Annexin II represents metastatic potential in clear-cell renal cell carcinoma. Br J Cancer. 2009;101(2):287–94. doi:10.1038/sj.bjc.6605128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Das S, Shetty P, Valapala M, Dasgupta S, Gryczynski Z, Vishwanatha JK. Signal transducer and activator of transcription 6 (STAT6) is a novel interactor of annexin A2 in prostate cancer cells. Biochemistry. 2010;49(10):2216–26. doi:10.1021/bi9013038.

    Article  CAS  PubMed  Google Scholar 

  39. Feng JG, Liu Q, Qin X, Geng YH, Zheng ST, Liu T, et al. Clinicopathological pattern and Annexin A2 and Cdc42 status in patients presenting with differentiation and lymphnode metastasis of esophageal squamous cell carcinomas. Mol Biol Rep. 2012;39(2):1267–74. doi:10.1007/s11033-011-0859-2.

    Article  CAS  PubMed  Google Scholar 

  40. Diaz VM, Hurtado M, Thomson TM, Reventos J, Paciucci R. Specific interaction of tissue-type plasminogen activator (t-PA) with annexin II on the membrane of pancreatic cancer cells activates plasminogen and promotes invasion in vitro. Gut. 2004;53(7):993–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brownstein C, Deora AB, Jacovina AT, Weintraub R, Gertler M, Khan KM, et al. Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages. Blood. 2004;103(1):317–24. doi:10.1182/blood-2003-04-1304.

    Article  CAS  PubMed  Google Scholar 

  42. Kassam G, Le BH, Choi KS, Kang HM, Fitzpatrick SL, Louie P, et al. The p11 subunit of the annexin II tetramer plays a key role in the stimulation of t-PA-dependent plasminogen activation. Biochemistry. 1998;37(48):16958–66. doi:10.1021/bi981713l.

    Article  CAS  PubMed  Google Scholar 

  43. Huang L, Xu J, Wood DJ, Zheng MH. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156(3):761–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Forsyth RG, De Boeck G, Baelde JJ, Taminiau AH, Uyttendaele D, Roels H, et al. CD33+ CD14- phenotype is characteristic of multinuclear osteoclast-like cells in giant cell tumor of bone. J Bone Miner Res : Off J Am Soc Bone Miner Res. 2009;24(1):70–7. doi:10.1359/jbmr.080905.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianru Xiao.

Ethics declarations

Funding

This study was funded by grants from the Biobank Project of Shanghai (12DZ2295103), Bone Tumor Sample Databases and Digital Information Platform Project of Shanghai (08DZ2292800), and Shanghai Biobank Network of Common Human Tumor Tissue (12DZ2295100).

Conflicts of interest

None

Ethical approval

Animals were involved in the present study. All experimental operations on animals were approved by the Animal Ethics Committees of the Second Military Medical University.

Human tissues were involved in the present study. All procedures performed in studies involving human participants were in accordance with the ethical standards of the Clinical Research Ethics Committee of Second Military Medical University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Tumor tissues were obtained with informed consent, and this study was approved by the Clinical Research Ethics Committee of Second Military Medical University.

Additional information

Zhenhua Zhou, Yan Li and Leqin Xu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.86 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Li, Y., Xu, L. et al. Biological characteristics of a novel giant cell tumor cell line derived from spine. Tumor Biol. 37, 9681–9689 (2016). https://doi.org/10.1007/s13277-016-4867-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4867-7

Keywords

Navigation