Skip to main content

Advertisement

Log in

Roles of CDKN1A gene polymorphisms (rs1801270 and rs1059234) in the development of cervical neoplasia

  • Original Article
  • Published:
Tumor Biology

Abstract

The CDKN1A gene product is a p53 downstream effector, which participates in cell differentiation, development process, repair, apoptosis, senescence, migration, and tumorigenesis. The objective of our study was investigated the importance of two polymorphisms in the CDKN1A gene, rs1801270 (31C>A) and rs1059234 (70C>T), for the development of cervical lesions in a Southeastern Brazilian population (283 cases, stratified by lesion severity, and 189 controls). CDKN1A genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and/or DNA sequencing. CDKN1A 31A allele presents a genetic pattern of protection for the development of high-grade cervical lesions (CC vs CA genotype: OR = 0.60; 95 % CI = 0.38–0.95; p = 0.029; CA+AA vs CC genotype: OR = 0.60; 95 % CI = 0.39–0.93; p = 0.021). Allele distributions of the CDKN1A 70C>T polymorphism were also different between the two study groups, with the CDKN1A 70T allele being less prevalent among cases. Moreover, the double heterozygote genotype combination 31CA-70CT decreases the chance of developing high-grade squamous intraepithelial lesion (HSIL) and cancer (OR = 0.55; 95 % CI = 0.32–0.93; p = 0.034) by 50 %, representing a protective factor against the development of more severe cervical lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr. Accessed 05 July 2015.

  2. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.

    Article  CAS  PubMed  Google Scholar 

  3. de Freitas CA, Almeida Diniz Gurgel AP, Chagas BS, Coimbra EC, do Amaral CM. Susceptibility to cervical cancer: an overview. Gynecol Oncol. 2012;126:304–11.

    Article  PubMed  Google Scholar 

  4. Muñoz N, Castellsaque X, de Gonzales AB, Gissmann L. HPV in the etiology of human cancer. Vaccine. 2006;24:S1–10.

    Article  Google Scholar 

  5. Weinberg RA. How cancer arises. Sci Am. 1996;62–70.

  6. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  CAS  PubMed  Google Scholar 

  7. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coleman N, Kissil J. Recent advances in the development of p21-activated kinase inhibitors. Cell Logist. 2012;2:132–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Overton W, Spencerb SL, Noderera WL, Meyer T, Wang CL. Basal p21 controls population heterogeneity in cycling and quiescent cell cycle states. PNAS. 2014;e4386–93.

  10. Souza H, Santos AM, Pinto D, Medeiros R. Is there a biological plausability for p53 codon 72 polymorphism influence on cervical cancer development? Acta Med Port. 2011;24:127–34.

    Google Scholar 

  11. Ma H, Zhou Z, Wei S, Wei Q. Association between p21 Ser31Arg polymorphism and cancer risk: a meta-analysis. Chin J Cancer. 2011;30:254–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niehs Environmental Genome Project. [Internet] University of Washington. Available from: http://egp.gs.washington.edu/data/cdkn1a/. Accessed 25 Nov 14.

  13. Chedid M, Michieli P, Lengel C, Huppi K, Givol D. A single nucleotide substitution at codon 31 (Ser/Arg) defines a polymorphism in a highly conserved region of the p53-inducible gene WAF1/CIP1. Oncogene. 1994;9:3021–4.

    CAS  PubMed  Google Scholar 

  14. Birgander R, Sjalander A, Saha N, et al. The codon 31 polymorphism of the p53-inducible gene p21 shows distinct differences between major ethnic groups. Hum Hered. 1996;46:148–54.

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharya P, Sengupta S. Lack of evidence that proline homozygosity at codón 72 of p53 and rare arginine allele at codón 31 of p21, jointly mediate cervical cancer susceptibility among Indian women. Gynecol Oncol. 2005;99:176–82.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang P, Liu J, Li W, Zeng X, Tang J. Role of p53 and p21 polymorphisms in the risk of cervical cancer among Chinese women. Acta Biochim Biophys Sin. 2010;42:671–6.

    Article  CAS  PubMed  Google Scholar 

  17. Tian Q, Lu W, Chen H, Ye F, Xie X. The nonsynonymous single-nucleotide polymorphisms in codon 31 of p21 gene and the susceptibility to cervical cancer in Chinese women. Int J Gynecol Cancer. 2009;19:1011–4.

    Article  PubMed  Google Scholar 

  18. Roh JW, Kim BK, Lee CH, Kim J, Chung HH, Kim JW, et al. p53 codon 72 and p21 codon 31 polymorphisms and susceptibility to cervical adenocarcinoma in Korean women. Oncol Res. 2010;18:453–9.

    Article  PubMed  Google Scholar 

  19. Ma Y, Zhang Y, Lin L, Guo X, Wu Y, Wen W, et al. Quantitative assessment of the relationship between p21 Ser31Arg polymorphism and cervical cancer. Tumour Biol. 2013;34:3887–92.

    Article  CAS  PubMed  Google Scholar 

  20. Wang N, Wang S, Zhang Q, Lu Y, Wei H, Li W, et al. Association of p21 SNPs and risk of cervical cancer among Chinese women. BMC Cancer. 2012;12:589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li G, Liu Z, Sturgis EM, Shi Q, Chamberlain RM, Spitz MR, et al. Genetic polymorphisms of p21 are associated with risk of squamous cell carcinoma of the head and neck. Carcinogenesis. 2005;9:1596–602.

    Article  Google Scholar 

  22. Carvalho IN, de Oliveira Reis AH, Cabello PH, Vargas FR. Polymorphisms of CDKN1A gene and risk of retinoblastoma. Carcinogenesis. 2013;34:2774–7.

    Article  CAS  PubMed  Google Scholar 

  23. Manta FS, Pereira R, Caiafa A, Silva DA, Gusmão L, Carvalho EF. Analysis of genetic ancestry in the admixed Brazilian population from Rio de Janeiro using 46 autosomal ancestry informative indel markers. Ann Hum Biol. 2013;40:94–8.

    Article  PubMed  Google Scholar 

  24. Vargas-Torres SL, Portari EA, Klumb EM, Guillobel HC, de Camargo MJ, Russomano FB, et al. Association of CDKN2A polymorphisms with the severity of cervical neoplasia in a Brazilian population. Biomarkers. 2014;9:121–7.

    Article  Google Scholar 

  25. Klumb EM, Pinto AC, Jesus GR, Araujo Jr M, Jascone L, Gayer CR, et al. Are women with lupus at higher risk of HPV infection? Lupus. 2010;19:1485–91.

    Article  CAS  PubMed  Google Scholar 

  26. Konishi R, Sakatani S, Kimihiro K, Suzuki K. Polymorphisms of p21 cyclin-dependent kinase inhibitor and malignant skin tumors. J Dermatol Sci. 2000;24:177–83.

    Article  CAS  PubMed  Google Scholar 

  27. Iniesta R, Guino E, Moreno V. Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos. Gac Sanit. 2005;19:333–41.

    Article  PubMed  Google Scholar 

  28. Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats your web tool for SNP analysis. [Internet] Bioinformatics. 2006;22:1928–9. Available from: http://bioinfo.iconcologia.net/snpstats/start.htm. Accessed 10 Aug 15.

  29. Vargas-Torres SL, Portari EA, Klumb EM, Guillobel HC, Camargo MJ, Russomano FB, et al. Effects of MDM2 promoter polymorphisms on the development of cervical neoplasia in a Southeastern Brazilian population. Biomarkers. 2014;19:637–45.

    Article  CAS  PubMed  Google Scholar 

  30. Portari E, Russomano FB, De Camargo MJ, Gayer CR, Guillobel HC, Santos-Rebouças CB, et al. Immunohistochemical expression of cyclin D1, p16Ink4a, p21WAF1, and Ki-67 correlates with the severity of cervical neoplasia. Int J Gynecol Pathol. 2013;32:501–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lukas J, Groshen S, Saffari B, Niu N, Reles A, Wen WH, et al. WAF1/Cip1 gene polymorphism and expression in carcinomas of the breast, ovary, and endometrium. Am J Pathol. 1997;150:167–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun Y, Hildesheim A, Li H, Li Y, Chen JY, Cheng YJ, et al. No point mutation but a codon 31ser>arg polymorphism of the WAF-1/CIP-1/p21 tumor suppressor gene in nasopharyngeal carcinoma (NPC): the polymorphism distinguishes Caucasians from Chinese. Cancer Epidemiol Biomarkers Prev. 1995;4:261–7.

    CAS  PubMed  Google Scholar 

  33. Su L, Sai Y, Fan R, Thurston SW, Miller DP, Zhou W, et al. p53 (codon 72) and p21 (codon 31) polymorphisms alter in vivo mRNA expression of p21. Lung Cancer. 2003;40:259–66.

    Article  PubMed  Google Scholar 

  34. Gomes CC, Drummond SN, Guimarães AL, Andrade CI, Mesquita RA, Gomez RS. p21/ WAF1 and cyclin D1 variants and oral squamous cell carcinoma. J Oral Pathol Med. 2008;37:151–6.

    Article  CAS  PubMed  Google Scholar 

  35. Valentin MD, Canalle R, Queiroz Rde P, Tone LG. Frequency of polymorphisms and protein expression of cyclin-dependent kinase inhibitor 1A (CDKN1A) in central nervous system tumors. Sao Paulo Med J. 2009;127:288–94.

    Article  PubMed  Google Scholar 

  36. Chen EY, Tran A, Raho CJ, Birch CM, Crum CP, Hirsch MS. Histological ‘progression’ from low (LSIL) to high (HSIL) squamous intraepithelial lesion is an uncommon event and an indication for quality assurance review. Mod Pathol. 2010;23:1045–51.

    Article  PubMed  Google Scholar 

  37. Roh JW, Kim MH, Kim JW, Park N, Song Y, Kang S, et al. Polymorphisms in codon 31 of p21 and cervical cancer susceptibility in Korean women. Cancer Lett. 2001;165:59–62.

    Article  CAS  PubMed  Google Scholar 

  38. Harima Y, Sawada S, Nagata K, Sougawa M, Ostapenko V, Ohnishi T. Polymorphism of the WAF1 gene is related to susceptibility to cervical cancer in Japanese women. Int J Mol Med. 2001;7:261–4.

    CAS  PubMed  Google Scholar 

  39. Liu F, Li B, Wei Y, Chen X, Ma Y, Yan L, et al. p21 codon 31 polymorphism associated with cancer among white people: evidence from a meta-analysis involving 78074 subjects. Mutagenesis. 2011;26:513–21.

    Article  CAS  PubMed  Google Scholar 

  40. Tanno B, Cesi V, Vitali R, Sesti F, Giuffrida ML, Mancini C, et al. Silencing of endogenous IGFBP-5 by micro RNA interference affects proliferation, apoptosis and differentiation of neuroblas- toma cells. Cell Death Differ. 2005;12:213–23.

    Article  CAS  PubMed  Google Scholar 

  41. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6:590–610.

    Article  CAS  PubMed  Google Scholar 

  43. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene. 2010;29:2302–8.

    Article  CAS  PubMed  Google Scholar 

  45. National Center for Biotechnology Information, U.S. National Library of Medicine. Available from: http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1059234. Accessed 08 Sept 2015

  46. Yin D, Jiang Y, Zhang S, Wang N, Lu Y, Wei H, et al. No association between p21 gene rs1059234 polymorphisms and risk of endometrial cancer among Han women in Northeast China. Cell Biochem Biophys. 2015;71:167–71.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson GG, Sherrington PD, Carter A, Lin K, Liloglou T, Field JK, et al. A novel type of p53 pathway dysfunction in chronic lymphocytic leukemia resulting from two interacting single nucleotide polymorphisms within the p21 gene. Cancer Res. 2009;69:5210–7.

    Article  CAS  PubMed  Google Scholar 

  48. Taghavi N, Biramijamal F, Abbaszadegan MR, Khademi H, Sotoudeh M, Khoshbakht S. P21 (Waf1/Cip1) gene polymorphisms and possible interaction with cigarette smoking in esophageal squamous cell carcinoma in northeastern Iran: a preliminary study. Arch Iran Med. 2010;13:235–42.

    CAS  PubMed  Google Scholar 

  49. Solovyev V, Sagitov V. Softberry, Inc., 2015. Available from: http://www.softberry.com. Accessed on 08 Sept 2015.

  50. Chang TH, Huang HY, Hsu JB, Weng SL, Horng JT, Huang HD. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinf. 2013;14 Suppl2:S4. Available from: http://regrna2.mbc.nctu.edu.tw/. Accessed 08 Sept 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacyara Maria Brito Macedo.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Torres, S.L., Portari, E.A., Silva, A.L. et al. Roles of CDKN1A gene polymorphisms (rs1801270 and rs1059234) in the development of cervical neoplasia. Tumor Biol. 37, 10469–10478 (2016). https://doi.org/10.1007/s13277-016-4850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4850-3

Keywords

Navigation