Skip to main content
Log in

Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase

  • Original Article
  • Published:
Tumor Biology

Abstract

Recombinant human arginase (rhArg) is an arginine-degrading enzyme that has been evaluated as effective therapeutics for varieties of malignant tumors and is in clinical trials for hepatocellular carcinoma (HCC) treatment nowadays. Our previous studies have reported that rhArg could induce autophagy and apoptosis in lymphoma cells and inhibiting autophagy could enhance the efficacy of rhArg on lymphoma. However, whether rhArg could induce autophagy and what roles autophagy plays in leukemia cells are unclear. In this study, we demonstrated that rhArg treatment could lead to the formation of autophagosomes and the upregulation of microtubule-associated protein light chain 3 II (LC3-II) in human promyelocytic leukemia HL-60 cells and human acute T cell leukemia Jurkat cells. Furthermore, inhibiting autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) could significantly enhance rhArg-induced cell growth inhibition and apoptosis. Taken together, these findings indicated that rhArg induced autophagy in leukemia cells and inhibiting autophagy enhanced anti-leukemia effect of rhArg, which might encourage the treatment of leukemia by targeting arginine depletion and autophagy in clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmiegelow K, Hjalgrim H. Is the risk of acute lymphoblastic leukemia reduced in siblings to children with the disease? A novel hypothesis explored by international collaboration. Leukemia. 2006;20(7):1206–8. doi:10.1038/sj.leu.2404250.

    Article  CAS  PubMed  Google Scholar 

  2. Fan J, Dong X, Zhang W, Zeng X, Li Y, Sun Y, et al. Tyrosine kinase inhibitor Thiotanib targets Bcr-Abl and induces apoptosis and autophagy in human chronic myeloid leukemia cells. Appl Microbiol Biotechnol. 2014;98(23):9763–75. doi:10.1007/s00253-014-6003-1.

    Article  CAS  PubMed  Google Scholar 

  3. Kersey JH. Fifty years of studies of the biology and therapy of childhood leukemia. Blood. 1998;92(5):1838.

    CAS  PubMed  Google Scholar 

  4. Christiansson L, Soderlund S, Mangsbo SM, Hjorth-Hansen H, Hoglund M, Markevarn B, et al. The tyrosine kinase inhibitors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses. Mol Cancer Ther. 2015;14(5):1181–91. doi:10.1158/1535-7163.MCT-14-0849.

    Article  CAS  PubMed  Google Scholar 

  5. Ma D, Fang Q, Wang P, Gao R, Wu W, Lu T, et al. Induction of heme oxygenase-1 by Na+−H+ exchanger 1 protein plays a crucial role in imatinib-resistant chronic myeloid leukemia cells. J Biol Chem. 2015;290(20):12558–71. doi:10.1074/jbc.M114.626960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song P, Ye L, Fan J, Li Y, Zeng X, Wang Z, et al. Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells. Oncotarget. 2015;6(6):3861–73. doi:10.18632/oncotarget.2869.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell. 2014;56(2):205–18. doi:10.1016/j.molcel.2014.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Z, Shi X, Li Y, Zeng X, Fan J, Sun Y, et al. Involvement of autophagy in recombinant human arginase-induced cell apoptosis and growth inhibition of malignant melanoma cells. Appl Microbiol Biotechnol. 2014;98(6):2485–94. doi:10.1007/s00253-013-5118-0.

    Article  CAS  PubMed  Google Scholar 

  9. Chow AK, Ng L, Sing Li H, Cheng CW, Lam CS, Yau TC, et al. Anti-tumor efficacy of a recombinant human arginase in human hepatocellular carcinoma. Curr Cancer Drug Targets. 2012;12(9):1233–43.

    CAS  PubMed  Google Scholar 

  10. Lam TL, Wong GK, Chow HY, Chong HC, Chow TL, Kwok SY, et al. Recombinant human arginase inhibits the in vitro and in vivo proliferation of human melanoma by inducing cell cycle arrest and apoptosis. Pigment Cell Melanoma Res. 2011;24(2):366–76. doi:10.1111/j.1755-148X.2010.00798.x.

    Article  CAS  PubMed  Google Scholar 

  11. Zeng X, Li Y, Fan J, Zhao H, Xian Z, Sun Y, et al. Recombinant human arginase induced caspase-dependent apoptosis and autophagy in non-Hodgkin’s lymphoma cells. Cell Death Dis. 2013;4, e840. doi:10.1038/cddis.2013.359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qiu F, Chen YR, Liu X, Chu CY, Shen LJ, Xu J, et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal. 2014;7(319):ra31. doi:10.1126/scisignal.2004761.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zeng X, Zhao H, Li Y, Fan J, Sun Y, Wang S, et al. Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia. Autophagy. 2015;11(2):355–72. doi:10.4161/15548627.2014.994368.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Zhu H, Zeng X, Fan J, Qian X, Wang S, et al. Suppression of autophagy enhanced growth inhibition and apoptosis of interferon-beta in human glioma cells. Mol Neurobiol. 2013;47(3):1000–10. doi:10.1007/s12035-013-8403-0.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Shi X, Li Y, Fan J, Zeng X, Xian Z, et al. Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells. Cell Death Dis. 2014;5, e1563. doi:10.1038/cddis.2014.503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Zeng X, Wang S, Sun Y, Wang Z, Fan J, et al. Inhibition of autophagy protects against PAMAM dendrimers-induced hepatotoxicity. Nanotoxicology. 2015;9(3):344–55. doi:10.3109/17435390.2014.930533.

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Li Y, Fan J, Wang Z, Zeng X, Sun Y, et al. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials. 2014;35(26):7588–97. doi:10.1016/j.biomaterials.2014.05.029.

    Article  CAS  PubMed  Google Scholar 

  18. Young C, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, et al. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. 2015;11(1):113–30. doi:10.4161/15548627.2014.994402.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hori YS, Hosoda R, Akiyama Y, Sebori R, Wanibuchi M, Mikami T, et al. Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. J Neurooncol. 2015;122(1):11–20. doi:10.1007/s11060-014-1686-9.

    Article  CAS  PubMed  Google Scholar 

  20. Lin TS, Mahajan S, Frank DA. STAT signaling in the pathogenesis and treatment of leukemias. Oncogene. 2000;19(21):2496–504. doi:10.1038/sj.onc.1203486.

    Article  CAS  PubMed  Google Scholar 

  21. Bassan R, Masciulli A, Intermesoli T, Audisio E, Rossi G, Pogliani EM, et al. Randomized trial of radiation-free central nervous system prophylaxis comparing intrathecal triple therapy with liposomal cytarabine in acute lymphoblastic leukemia. Haematologica. 2015;100(6):786–93. doi:10.3324/haematol.2014.123273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gervasini G, Vagace JM. Impact of genetic polymorphisms on chemotherapy toxicity in childhood acute lymphoblastic leukemia. Front Genet. 2012;3:249. doi:10.3389/fgene.2012.00249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest. 2015;125(4):1591–602. doi:10.1172/JCI78239.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tiwana GS, Prevo R, Buffa FM, Yu S, Ebner DV, Howarth A, et al. Identification of vitamin B1 metabolism as a tumor-specific radiosensitizing pathway using a high-throughput colony formation screen. Oncotarget. 2015;6(8):5978–89. doi:10.18632/oncotarget.3468.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer. 2004;100(4):826–33. doi:10.1002/cncr.20057.

    Article  CAS  PubMed  Google Scholar 

  26. Mussai F, Egan S, Higginbotham-Jones J, Perry T, Beggs A, Odintsova E, et al. Arginine dependence of acute myeloid leukaemia blast proliferation: a novel therapeutic target. Blood. 2015;125(15):2386–96. doi:10.1182/blood-2014-09-600643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khoury O, Ghazale N, Stone E, El-Sibai M, Frankel AE, Abi-Habib RJ. Human recombinant arginase I (Co)-PEG5000 [HuArgI (Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human glioblastoma cells. J Neurooncol. 2015;122(1):75–85. doi:10.1007/s11060-014-1698-5.

    Article  CAS  PubMed  Google Scholar 

  28. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411(6835):342–8. doi:10.1038/35077213.

    Article  CAS  PubMed  Google Scholar 

  29. Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, et al. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One. 2014;9(5), e98207. doi:10.1371/journal.pone.0098207.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moreau P, Moreau K, Segarra A, Tourbiez D, Travers MA, Rubinsztein DC, et al. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections. Autophagy. 2015;11(3):516–26. doi:10.1080/15548627.2015.1017188.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wan G, Xie W, Liu Z, Xu W, Lao Y, Huang N, et al. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy. 2014;10(1):70–9. doi:10.4161/auto.26534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen P, Hu T, Liang Y, Jiang Y, Pan Y, Li C, et al. Synergistic inhibition of autophagy and neddylation pathways as a novel therapeutic approach for targeting liver cancer. Oncotarget. 2015;6(11):9002–17. doi:10.18632/oncotarget.3282.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vogel RI, Coughlin K, Scotti A, Iizuka Y, Anchoori R, Roden RB, et al. Simultaneous inhibition of deubiquitinating enzymes (DUBs) and autophagy synergistically kills breast cancer cells. Oncotarget. 2015;6(6):4159–70. doi:10.18632/oncotarget.2904.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lotze MT, Buchser WJ, Liang X. Blocking the interleukin 2 (IL2)-induced systemic autophagic syndrome promotes profound antitumor effects and limits toxicity. Autophagy. 2012;8(8):1264–6. doi:10.4161/auto.20752.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Key Basic Research Program of China (2013CB932502, 2015CB931800), the National Natural Science Foundation of China (81573332), and Shanghai Science and Technology Funds (14431900200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobin Mei or Dianwen Ju.

Ethics declarations

Conflicts of interest

None

Additional information

Yubin Li and Xian Zeng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

rhArg induced formation of autophagosomes in leukemia cells. HL-60 and Jurkat cells were treated with or without 1 IU/ml of rhArg for 24 h. Cell samples were prepared for transmission electron microscopy analysis as described in “Materials and methods.” Autophagosomes were counted, and the data were presented as the means ± SD of four samples. **p < 0.01 versus Ctrl; ***p < 0.001 versus Ctrl (JPEG 19 kb)

High resolution image (TIFF 4211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zeng, X., Wang, S. et al. Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase. Tumor Biol. 37, 6627–6635 (2016). https://doi.org/10.1007/s13277-015-4253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4253-x

Keywords

Navigation