Skip to main content
Log in

Activation of autophagy following [HuArgI (Co)-PEG5000]-induced arginine deprivation mediates cell death in colon cancer cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Deregulating cellular energetics by reprogramming metabolic pathways, including arginine metabolism, is critical for cancer cell onset and survival. Drugs that target the specific metabolic requirements of cancer cells have emerged as promising targeted cancer therapeutics. In this study, we investigate the therapeutic potential of targeting colon cancer cells using arginine deprivation induced by a pegylated cobalt-substituted recombinant human Arginase I [HuArgI (Co)-PEG5000]. Four colon cancer cell lines were tested for their sensitivity to [HuArgI (Co)-PEG5000] as well as for their mechanism of cell death following arginine deprivation. All four cell lines were sensitive to arginine deprivation induced by [HuArgI (Co)-PEG5000]. All cells expressed ASS1 and were rescued from arginine deprivation-induced cytotoxicity by the addition of excess l-citrulline, indicating they are partially auxotrophic for arginine. Mechanistically, cells treated with [HuArgI (Co)-PEG5000] were negative for AnnexinV and lacked caspase activation. Further investigation revealed that arginine deprivation leads to a marked and prolonged activation of autophagy in both Caco-2 and T84 cell lines. Finally, we show that [HuArgI (Co)-PEG5000] causes cell death by sustained activation of autophagy as evidenced by the decrease in cell cytotoxicity upon treatment with chloroquine, an autophagy inhibitor. Altogether, these data demonstrate that colon cancer cells are partially auxotrophic for arginine and sensitive to [HuArgI (Co)-PEG5000]-induced arginine deprivation. They also show that the activation of autophagy does not play protective roles but rather, induces cytotoxicity and leads to cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cancer Facts & Figures 2018. American Cancer Society journal, CA: A Cancer Journal for Clinicians [updated 20182020]. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html. Accessed Mar 2020

  2. Araghi M, Soerjomataram I, Jenkins M, et al. Global trends in colorectal cancer mortality: projections to the year 2035. Int J Cancer. 2019;144:2992–3000.

    CAS  PubMed  Google Scholar 

  3. Nasrallah A, Saykali B, Al Dimassi S, Khoury N, Hanna S, El-Sibai M. Effect of StarD13 on colorectal cancer proliferation, motility and invasion. Oncol Rep. 2014;31:505–15.

    CAS  PubMed  Google Scholar 

  4. Al-Koussa H, Al-Haddad M, Abi-Habib R, El-Sibai M. Human recombinant arginase I [HuArgI (Co)-PEG5000]-Induced arginine depletion inhibits colorectal cancer cell migration and invasion. Int J Mol Sci. 2019; 20(23):6018.

    Google Scholar 

  5. Daaboul HE, Daher CF, Bodman-Smith K, et al. Antitumor activity of beta-2-himachalen-6-ol in colon cancer is mediated through its inhibition of the PI3K and MAPK pathways. Chem Biol Interact. 2017;275:162–70.

    CAS  PubMed  Google Scholar 

  6. Shebaby WN, Bodman-Smith KB, Mansour A, et al. Daucus carota pentane-based fractions suppress proliferation and induce apoptosis in human colon adenocarcinoma HT-29 cells by inhibiting the MAPK and PI3K pathways. J Med Food. 2015;18:745–52.

    PubMed  Google Scholar 

  7. Morris SM Jr. Enzymes of arginine metabolism. J Nutr. 2743S;134:2743S–S27472747 (discussion 65S-67S).

    CAS  PubMed  Google Scholar 

  8. Kuo MT, Savaraj N, Feun LG. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget. 2010;1:246–51.

    PubMed  PubMed Central  Google Scholar 

  9. Mauldin JP, Zeinali I, Kleypas K, et al. Recombinant human arginase toxicity in mice is reduced by citrulline supplementation. Transl Oncol. 2012;5:26–31.

    PubMed  PubMed Central  Google Scholar 

  10. Khoury O, Ghazale N, Stone E, El-Sibai M, Frankel AE, Abi-Habib RJ. Human recombinant arginase I (Co)-PEG5000 [HuArgI (Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human glioblastoma cells. J Neurooncol. 2015;122:75–85.

    CAS  PubMed  Google Scholar 

  11. Tanios R, Bekdash A, Kassab E, et al. Human recombinant arginase I(Co)-PEG5000 [HuArgI(Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human acute myeloid leukemia cells. Leuk Res. 2013;37:1565–71.

    CAS  PubMed  Google Scholar 

  12. Stone EM, Glazer ES, Chantranupong L, et al. Replacing Mn(2+) with Co(2+) in human arginase i enhances cytotoxicity toward l-arginine auxotrophic cancer cell lines. ACS Chem Biol. 2010;5:333–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Davis FF, Abuchowski A, van Es T, et al. Enzyme-polyethylene glycol adducts: modified enzymes with unique properties. In: Broun GB, Manecke G, Wingard LB, editors. Enzyme engineering, vol. 4. Boston: Springer US; 1978. p. 169–173.

    Google Scholar 

  14. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discovery. 2003;2:214–21.

    CAS  PubMed  Google Scholar 

  15. Cramer SL, Saha A, Liu J, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120–7.

    CAS  PubMed  Google Scholar 

  16. Wetzler M, Sanford BL, Kurtzberg J, et al. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia: cancer and Leukemia Group B Study 9511. Blood. 2007;109:4164–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Glazer ES, Stone EM, Zhu C, Massey KL, Hamir AN, Curley SA. Bioengineered human arginase I with enhanced activity and stability controls hepatocellular and pancreatic carcinoma xenografts. Transl Oncol. 2011;4:138–46.

    PubMed  PubMed Central  Google Scholar 

  18. Hernandez CP, Morrow K, Lopez-Barcons LA, et al. Pegylated arginase I: a potential therapeutic approach in T-ALL. Blood. 2010;115:5214–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng PN, Lam TL, Lam WM, et al. Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Can Res. 2007;67:309–17.

    CAS  Google Scholar 

  20. Lam TL, Wong GK, Chong HC, et al. Recombinant human arginase inhibits proliferation of human hepatocellular carcinoma by inducing cell cycle arrest. Cancer Lett. 2009;277:91–100.

    CAS  PubMed  Google Scholar 

  21. Nasreddine G, El-Sibai M, Abi-Habib RJ. Cytotoxicity of [HuArgI (co)-PEG5000]-induced arginine deprivation to ovarian Cancer cells is autophagy dependent. Invest New Drugs. 2020;38:10–9.

    CAS  PubMed  Google Scholar 

  22. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–73.

    CAS  PubMed  Google Scholar 

  24. Zhang N, Qi Y, Wadham C, et al. FTY720 induces necrotic cell death and autophagy in ovarian cancer cells: a protective role of autophagy. Autophagy. 2010;6:1157–67.

    CAS  PubMed  Google Scholar 

  25. Wang J, Wu GS. Role of autophagy in cisplatin resistance in ovarian cancer cells. J Biol Chem. 2014;289:17163–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cloonan SM, Williams DC. The antidepressants maprotiline and fluoxetine induce Type II autophagic cell death in drug-resistant Burkitt’s lymphoma. Int J Cancer. 2011;128:1712–23.

    CAS  PubMed  Google Scholar 

  27. Al-Dimassi S, Salloum G, Saykali B, et al. Targeting the MAP kinase pathway in astrocytoma cells using a recombinant anthrax lethal toxin as a way to inhibit cell motility and invasion. Int J Oncol. 2016;48:1913–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Boubbou K, Azar D, Bekdash A, Abi-Habib RJ. Doxironide magnetic nanoparticles for selective drug delivery to human acute myeloid leukemia. J Biomed Nanotechnol. 2017;13:500–12.

    CAS  Google Scholar 

  29. Kassab E, Darwish M, Timsah Z, et al. Cytotoxicity of anthrax lethal toxin to human acute myeloid leukemia cells is nonapoptotic and dependent on extracellular signal-regulated kinase 1/2 activity. Transl Oncol. 2013;6:25–322.

    PubMed  PubMed Central  Google Scholar 

  30. Bekdash A, Darwish M, Timsah Z, et al. Phospho-MEK1/2 and uPAR expression determine sensitivity of AML blasts to a Urokinase-activated anthrax lethal toxin (PrAgU2/LF). Transl Oncol. 2015;8:347–57.

    PubMed  PubMed Central  Google Scholar 

  31. Mussai F, De Santo C, Abu-Dayyeh I, et al. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood. 2013;122:749–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoon CY, Shim YJ, Kim EH, et al. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer. 2007;120:897–905.

    CAS  PubMed  Google Scholar 

  33. Agrawal V, Woo JH, Borthakur G, Kantarjian H, Frankel AE. Red blood cell-encapsulated l-asparaginase: potential therapy of patients with asparagine synthetase deficient acute myeloid leukemia. Protein Pept Lett. 2013;20:392–402.

    CAS  PubMed  Google Scholar 

  34. Müller HJ, Boos J. Use of l-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998;28:97–113.

    PubMed  Google Scholar 

  35. Agrawal V, Woo JH, Mauldin JP, et al. Cytotoxicity of human recombinant arginase I (Co)-PEG5000 in the presence of supplemental l-citrulline is dependent on decreased argininosuccinate synthetase expression in human cells. Anticancer Drugs. 2012;23:51–64.

    CAS  PubMed  Google Scholar 

  36. Delage B, Fennell DA, Nicholson L, et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 2010;126:2762–72.

    CAS  PubMed  Google Scholar 

  37. Kim RH, Coates JM, Bowles TL, et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Can Res. 2009;69:700–8.

    CAS  Google Scholar 

  38. Syed N, Langer J, Janczar K, et al. Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma. Cell Death Dis. 2013;4:e458.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Periyasamy-Thandavan S, Jiang M, Schoenlein P, Dong Z. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol. 2009;297:F244–F256256.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM. Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell cycle (Georgetown, Tex). 2012;11:2022–9.

    CAS  Google Scholar 

  41. Bean GR, Kremer JC, Prudner BC, et al. A metabolic synthetic lethal strategy with arginine deprivation and chloroquine leads to cell death in ASS1-deficient sarcomas. Cell Death Dis. 2016;7:e2406.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin C, Wang Z, Li L, et al. The role of autophagy in the cytotoxicity induced by recombinant human arginase in laryngeal squamous cell carcinoma. Appl Microbiol Biotechnol. 2015;99:8487–94.

    CAS  PubMed  Google Scholar 

  43. Delage B, Luong P, Maharaj L, et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis. 2012;3:e342.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Changou CA, Chen YR, Xing L, et al. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc Natl Acad Sci USA. 2014;111:14147–522.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Lebanese American University for funding and support

Author information

Authors and Affiliations

Authors

Contributions

MS, AB, IF, OEA and JBN performed experiments for this manuscript. ME-S collaborated on the autophagy part of the study. RJA-H is the corresponding author, he obtained funding, designed the study and wrote the manuscript.

Corresponding author

Correspondence to Ralph J. Abi-Habib.

Ethics declarations

Conflict of interest

All author declares that has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swayden, M., Bekdash, A., Fakhoury, I. et al. Activation of autophagy following [HuArgI (Co)-PEG5000]-induced arginine deprivation mediates cell death in colon cancer cells. Human Cell 34, 152–164 (2021). https://doi.org/10.1007/s13577-020-00437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00437-4

Keywords

Navigation