Skip to main content

Human Plasma Extracellular Vesicle Isolation and Proteomic Characterization for the Optimization of Liquid Biopsy in Multiple Myeloma

  • Protocol
  • First Online:
Proteomic Profiling

Abstract

Cancer cells secrete membranous extracellular vesicles (EVs) which contain specific oncogenic molecular cargo (including oncoproteins, oncopeptides, and RNA) into their microenvironment and the circulation. As such, EVs including exosomes (small EVs) and microvesicles (large EVs) represent important circulating biomarkers for various diseases, including cancer and its progression. These circulating biomarkers offer a potentially minimally invasive and repeatable targets for analysis (liquid biopsy) that could aid in the diagnosis, risk stratification, and monitoring of cancer. Although their potential as cancer biomarkers has been promising, the identification and quantification of EVs in clinical samples remain challenging. Like EVs, other types of circulating biomarkers (including cell-free nucleic acids, cf-NAs; or circulating tumor cells, CTCs) may represent a complementary or alternative approach to cancer diagnosis. In the context of multiple myeloma (MM), a systemic cancer type that causes cancer cells to accumulate in the bone marrow, the specific role for EVs as biomarkers for diagnosis and monitoring remains undefined. Tumor heterogeneity along with the various subtypes of MM (such as non-secretory MM) that cannot be monitored using conventional testing (e.g. sequential serological testing and bone marrow biopsies) render liquid biopsy and circulating tumor-derived EVs a promising approach. In this protocol, we describe the isolation and purification of EVs from peripheral blood plasma (PBPL) collected from healthy donors and patients with MM for a biomarker discovery strategy. Our results demonstrate detection of circulating EVs from as little as 1 mL of MM patients’ PBPL. High-resolution mass spectrometry (MS)-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease. We describe biophysical characterization and quantitative proteomic profiling of disease-specific circulating EVs which may provide important implications for the development of cancer diagnostics in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barwick BG, Gupta VA, Vertino PM, Boise LH (2019) Cell of origin and genetic alterations in the pathogenesis of multiple myeloma. Front Immunol 10:1121. https://doi.org/10.3389/fimmu.2019.01121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seth S, Zanwar S, Vu L, Kapoor P (2020) Monoclonal gammopathy of undetermined significance: current concepts and future prospects. Curr Hematol Malig Rep. https://doi.org/10.1007/s11899-020-00569-2

  3. Rajkumar SV (2016) Updated diagnostic criteria and staging system for multiple myeloma. Am Soc Clin Oncol Educ Book 35:e418–e423. https://doi.org/10.1200/EDBK_159009

    Article  PubMed  Google Scholar 

  4. Ravi P, Kumar SK, Cerhan JR, Maurer MJ, Dingli D, Ansell SM, Rajkumar SV (2018) Defining cure in multiple myeloma: a comparative study of outcomes of young individuals with myeloma and curable hematologic malignancies. Blood Cancer J 8(3):26. https://doi.org/10.1038/s41408-018-0065-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Spencer AM, P, HA B (2019) Real-world outcome for newly diagnosed patients with functional high-risk myeloma—a myeloma and related diseases registry analysis—abstract. Paper presented at the ASH Orlando, 7–10 dicembre 2019

    Google Scholar 

  6. Dutta AK, Fink JL, Grady JP, Morgan GJ, Mullighan CG, To LB, Hewett DR, Zannettino ACW (2019) Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia 33(2):457–468. https://doi.org/10.1038/s41375-018-0206-x

    Article  CAS  PubMed  Google Scholar 

  7. Lakshman A, Rajkumar SV, Buadi FK, Binder M, Gertz MA, Lacy MQ, Dispenzieri A, Dingli D, Fonder AL, Hayman SR, Hobbs MA, Gonsalves WI, Hwa YL, Kapoor P, Leung N, Go RS, Lin Y, Kourelis TV, Warsame R, Lust JA, Russell SJ, Zeldenrust SR, Kyle RA, Kumar SK (2018) Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J 8(6):59. https://doi.org/10.1038/s41408-018-0077-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saltarella I, Morabito F, Giuliani N, Terragna C, Omedè P, Palumbo A, Bringhen S, De Paoli L, Martino E, Larocca A, Offidani M, Patriarca F, Nozzoli C, Guglielmelli T, Benevolo G, Callea V, Baldini L, Grasso M, Leonardi G, Rizzo M, Falcone AP, Gottardi D, Montefusco V, Musto P, Petrucci MT, Dammacco F, Boccadoro M, Vacca A, Ria R (2019) Prognostic or predictive value of circulating cytokines and angiogenic factors for initial treatment of multiple myeloma in the GIMEMA MM0305 randomized controlled trial. J Hematol Oncol 12(1):4. https://doi.org/10.1186/s13045-018-0691-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Solimando AG, Da Vià MC, Cicco S, Leone P, Di Lernia G, Giannico D, Desantis V, Frassanito MA, Morizio A, Delgado Tascon J, Melaccio A, Saltarella I, Ranieri G, Ria R, Rasche L, Kortüm KM, Beilhack A, Racanelli V, Vacca A, Einsele H (2019) High-risk multiple myeloma: integrated clinical and omics approach dissects the neoplastic clone and the tumor microenvironment. J Clin Med 8(7). https://doi.org/10.3390/jcm8070997

  10. Bolli N, Biancon G, Moarii M, Gimondi S, Li Y, de Philippis C, Maura F, Sathiaseelan V, Tai YT, Mudie L, O’Meara S, Raine K, Teague JW, Butler AP, Carniti C, Gerstung M, Bagratuni T, Kastritis E, Dimopoulos M, Corradini P, Anderson KC, Moreau P, Minvielle S, Campbell PJ, Papaemmanuil E, Avet-Loiseau H, Munshi NC (2018) Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia 32(12):2604–2616. https://doi.org/10.1038/s41375-018-0037-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caers J, Garderet L, Kortüm KM, O’Dwyer ME, van de Donk NWCJ, Binder M, Dold SM, Gay F, Corre J, Beguin Y, Ludwig H, Larocca A, Driessen C, Dimopoulos MA, Boccadoro M, Gramatzki M, Zweegman S, Einsele H, Cavo M, Goldschmidt H, Sonneveld P, Delforge M, Auner HW, Terpos E, Engelhardt M (2018) European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: what to use and when. Haematologica 103(11):1772–1784. https://doi.org/10.3324/haematol.2018.189159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M, Getz G, Golub TR, Consortium MMR (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25(1):91–101. https://doi.org/10.1016/j.ccr.2013.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lonial S, Jacobus S, Fonseca R, Weiss M, Kumar S, Orlowski RZ, Kaufman JL, Yacoub AM, Buadi FK, O’Brien T, Matous JV, Anderson DM, Emmons RV, Mahindra A, Wagner LI, Dhodapkar MV, Rajkumar SV (2020) Randomized trial of lenalidomide versus observation in smoldering multiple myeloma. J Clin Oncol 38(11):1126–1137. https://doi.org/10.1200/JCO.19.01740

    Article  CAS  PubMed  Google Scholar 

  14. Mateos MV, Hernández MT, Giraldo P, de la Rubia J, de Arriba F, López Corral L, Rosiñol L, Paiva B, Palomera L, Bargay J, Oriol A, Prosper F, López J, Olavarría E, Quintana N, García JL, Bladé J, Lahuerta JJ, San Miguel JF (2013) Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med 369(5):438–447. https://doi.org/10.1056/NEJMoa1300439

    Article  CAS  PubMed  Google Scholar 

  15. Nandakumar B, Gonsalves W, Buadi F (2019) Clinical and cytogenetic features of non-secretory multiple myeloma (NSMM) in the era of novel agent induction therapy: The Mayo Clinic experience. J Clin Oncol 37. https://doi.org/10.1200/JCO.2019.37.15_suppl.e19519

  16. Chen M, Mithraprabhu S, Ramachandran M, Choi K, Khong T, Spencer A (2019) Utility of circulating cell-free RNA analysis for the characterization of global transcriptome profiles of multiple myeloma patients. Cancers (Basel) 11(6). https://doi.org/10.3390/cancers11060887

  17. Fernández-Lázaro D, García Hernández JL, García AC, Córdova Martínez A, Mielgo-Ayuso J, Cruz-Hernández JJ (2020) Liquid biopsy as novel tool in precision medicine: origins, properties, identification and clinical perspective of cancer’s biomarkers. Diagnostics (Basel) 10(4). https://doi.org/10.3390/diagnostics10040215

  18. Manier S, Park J, Capelletti M, Bustoros M, Freeman SS, Ha G, Rhoades J, Liu CJ, Huynh D, Reed SC, Gydush G, Salem KZ, Rotem D, Freymond C, Yosef A, Perilla-Glen A, Garderet L, Van Allen EM, Kumar S, Love JC, Getz G, Adalsteinsson VA, Ghobrial IM (2018) Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun 9(1):1691. https://doi.org/10.1038/s41467-018-04001-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mithraprabhu S, Sirdesai S, Chen M, Khong T, Spencer A (2018) Circulating tumour DNA analysis for tumour genome characterisation and monitoring disease burden in extramedullary multiple myeloma. Int J Mol Sci 19(7). https://doi.org/10.3390/ijms19071858

  20. Mithraprabhu S, Spencer A (2018) Liquid biopsy in multiple myeloma. In: Hematology—latest research and clinical advances. Intechopen. https://doi.org/10.5772/intechopen.72652

  21. Desroches J, Jermyn M, Pinto M, Picot F, Tremblay MA, Obaid S, Marple E, Urmey K, Trudel D, Soulez G, Guiot MC, Wilson BC, Petrecca K, Leblond F (2018) A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep 8(1):1792. https://doi.org/10.1038/s41598-018-20233-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hiller RG, Patecki M, Neunaber C, Reifenrath J, Kielstein JT, Kielstein H (2017) A comparative study of bone biopsies from the iliac crest, the tibial bone, and the lumbar spine. BMC Nephrol 18(1):134. https://doi.org/10.1186/s12882-017-0550-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Niu XK, Li J, Das SK, Xiong Y, Yang CB, Peng T (2017) Developing a nomogram based on multiparametric magnetic resonance imaging for forecasting high-grade prostate cancer to reduce unnecessary biopsies within the prostate-specific antigen gray zone. BMC Med Imaging 17(1):11. https://doi.org/10.1186/s12880-017-0184-x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stefanova V, Buckley R, Flax S, Spevack L, Hajek D, Tunis A, Lai E, Loblaw A, Collaborators (2019) Transperineal prostate biopsies using local anesthesia: experience with 1,287 patients. Prostate cancer detection rate, complications and patient tolerability. J Urol 201(6):1121–1126. https://doi.org/10.1097/JU.0000000000000156

    Article  PubMed  Google Scholar 

  25. Vagn-Hansen C, Pedersen MR, Rafaelsen SR (2016) Diagnostic yield and complications of transthoracic computed tomography-guided biopsies. Dan Med J 63:6

    Google Scholar 

  26. Wojciechowski A, Duckert M, Hartmann J, Bullinger L, Matzdorff A (2019) Retroperitoneal hematoma after bone marrow biopsy: the first cut should not be the deepest. Oncol Res Treat 42(5):283–288. https://doi.org/10.1159/000499743

    Article  PubMed  Google Scholar 

  27. Alix-Panabières C (2020) The future of liquid biopsy. Nature 579(7800):S9. https://doi.org/10.1038/d41586-020-00844-5

    Article  CAS  PubMed  Google Scholar 

  28. Chen M, Zhao H (2019) Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 13(1):34. https://doi.org/10.1186/s40246-019-0220-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mattox AK, Bettegowda C, Zhou S, Papadopoulos N, Kinzler KW, Vogelstein B (2019) Applications of liquid biopsies for cancer. Sci Transl Med 11(507). https://doi.org/10.1126/scitranslmed.aay1984

  30. Rolfo C, Mack PC, Scagliotti GV, Baas P, Barlesi F, Bivona TG, Herbst RS, Mok TS, Peled N, Pirker R, Raez LE, Reck M, Riess JW, Sequist LV, Shepherd FA, Sholl LM, Tan DSW, Wakelee HA, Wistuba II, Wynes MW, Carbone DP, Hirsch FR, Gandara DR (2018) Liquid biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC. J Thorac Oncol 13(9):1248–1268. https://doi.org/10.1016/j.jtho.2018.05.030

    Article  PubMed  Google Scholar 

  31. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Dal Molin M, Wang TL, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong HL, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou S, Bettegowda C, Diaz LA, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359(6378):926–930. https://doi.org/10.1126/science.aar3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li XY, Zhou LY, Luo H, Zhu Q, Zuo L, Liu GY, Feng C, Zhao JY, Zhang YY, Li X (2019) The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226-3p to regulate mucin-1c expression in invasive breast cancer. Aging (Albany NY) 11(15):5646–5665. https://doi.org/10.18632/aging.102149

    Article  CAS  Google Scholar 

  33. Zhang HG, Grizzle WE (2014) Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol 184(1):28–41. https://doi.org/10.1016/j.ajpath.2013.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL (2009) Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol 183(6):3720–3730. https://doi.org/10.4049/jimmunol.0900970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527(7576):100–104. https://doi.org/10.1038/nature15376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Luca L, Laurenzana I, Trino S, Lamorte D, Caivano A, Musto P (2019) An update on extracellular vesicles in multiple myeloma: a focus on their role in cell-to-cell cross-talk and as potential liquid biopsy biomarkers. Expert Rev Mol Diagn 19(3):249–258. https://doi.org/10.1080/14737159.2019.1583103

    Article  CAS  PubMed  Google Scholar 

  37. de Wit S, Manicone M, Rossi E, Lampignano R, Yang L, Zill B, Rengel-Puertas A, Ouhlen M, Crespo M, Berghuis AMS, Andree KC, Vidotto R, Trapp EK, Tzschaschel M, Colomba E, Fowler G, Flohr P, Rescigno P, Fontes MS, Zamarchi R, Fehm T, Neubauer H, Rack B, Alunni-Fabbroni M, Farace F, De Bono J, IJzerman MJ, Terstappen LWMM (2018) EpCAM high and EpCAM low circulating tumor cells in metastatic prostate and breast cancer patients. Oncotarget 9(86):35705–35716. https://doi.org/10.18632/oncotarget.26298

  38. Hocking J, Mithraprabhu S, Kalff A, Spencer A (2016) Liquid biopsies for liquid tumors: emerging potential of circulating free nucleic acid evaluation for the management of hematologic malignancies. Cancer Biol Med 13(2):215–225. https://doi.org/10.20892/j.issn.2095-3941.2016.0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mithraprabhu S, Khong T, Ramachandran M, Chow A, Klarica D, Mai L, Walsh S, Broemeling D, Marziali A, Wiggin M, Hocking J, Kalff A, Durie B, Spencer A (2017) Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia 31(8):1695–1705. https://doi.org/10.1038/leu.2016.366

    Article  CAS  PubMed  Google Scholar 

  40. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ (2018) Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat Rev Clin Oncol 15(10):617–638. https://doi.org/10.1038/s41571-018-0036-9

    Article  CAS  PubMed  Google Scholar 

  41. Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, Dahiya R, Tanaka Y, Saini S (2018) microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res 78(7):1833–1844. https://doi.org/10.1158/0008-5472.CAN-17-2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buscail E, Alix-Panabières C, Quincy P, Cauvin T, Chauvet A, Degrandi O, Caumont C, Verdon S, Lamrissi I, Moranvillier I, Buscail C, Marty M, Laurent C, Vendrely V, Moreau-Gaudry F, Bedel A, Dabernat S, Chiche L (2019) High clinical value of liquid biopsy to detect circulating tumor cells and tumor exosomes in pancreatic ductal adenocarcinoma patients eligible for up-front surgery. Cancers (Basel) 11(11). https://doi.org/10.3390/cancers11111656

  43. Cho HJ, Eun JW, Baek GO, Seo CW, Ahn HR, Kim SS, Cho SW, Cheong JY (2020) Serum exosomal MicroRNA, miR-10b-5p, as a potential diagnostic biomarker for early-stage hepatocellular carcinoma. J Clin Med 9(1). https://doi.org/10.3390/jcm9010281

  44. Ebrahimkhani S, Vafaee F, Hallal S, Wei H, Lee MYT, Young PE, Satgunaseelan L, Beadnall H, Barnett MH, Shivalingam B, Suter CM, Buckland ME, Kaufman KL (2018) Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis Oncol 2:28. https://doi.org/10.1038/s41698-018-0071-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu XN, Cui DN, Li YF, Liu YH, Liu G, Liu L (2019) Multiple “Omics” data-based biomarker screening for hepatocellular carcinoma diagnosis. World J Gastroenterol 25(30):4199–4212. https://doi.org/10.3748/wjg.v25.i30.4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gámez-Valero A, Campdelacreu J, Reñé R, Beyer K, Borràs FE (2019) Comprehensive proteomic profiling of plasma-derived extracellular vesicles from dementia with Lewy bodies patients. Sci Rep 9(1):13282. https://doi.org/10.1038/s41598-019-49668-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo D, Yuan J, Xie A, Lin Z, Li X, Chen J (2020) Diagnostic performance of circulating exosomes in human cancer: a meta-analysis. J Clin Lab Anal:e23341. https://doi.org/10.1002/jcla.23341

  48. Max KEA, Bertram K, Akat KM, Bogardus KA, Li J, Morozov P, Ben-Dov IZ, Li X, Weiss ZR, Azizian A, Sopeyin A, Diacovo TG, Adamidi C, Williams Z, Tuschl T (2018) Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc Natl Acad Sci U S A 115(23):E5334–E5343. https://doi.org/10.1073/pnas.1714397115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng L, Sharples RA, Scicluna BJ, Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 3. https://doi.org/10.3402/jev.v3.23743

  50. Ge Y, Mu W, Ba Q, Li J, Jiang Y, Xia Q, Wang H (2020) Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Lett 477:41–48. https://doi.org/10.1016/j.canlet.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  51. Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ (2017) Proteomic insights into extracellular vesicle biology—defining exosomes and shed microvesicles. Expert Rev Proteomics 14(1):69–95. https://doi.org/10.1080/14789450.2017.1260450

    Article  CAS  PubMed  Google Scholar 

  52. Logozzi M, Angelini DF, Giuliani A, Mizzoni D, Di Raimo R, Maggi M, Gentilucci A, Marzio V, Salciccia S, Borsellino G, Battistini L, Sciarra A, Fais S (2019) Increased plasmatic levels of PSA-expressing exosomes distinguish prostate cancer patients from benign prostatic hyperplasia: a prospective study. Cancers (Basel) 11(10). https://doi.org/10.3390/cancers11101449

  53. Rodríguez Zorrilla S, Pérez-Sayans M, Fais S, Logozzi M, Gallas Torreira M, García García A (2019) A pilot clinical study on the prognostic relevance of plasmatic exosomes levels in oral squamous cell carcinoma patients. Cancers (Basel) 11(3). https://doi.org/10.3390/cancers11030429

  54. Shtam T, Naryzhny S, Samsonov R, Karasik D, Mizgirev I, Kopylov A, Petrenko E, Zabrodskaya Y, Kamyshinsky R, Nikitin D, Sorokin M, Buzdin A, Gil-Henn H, Malek A (2019) Plasma exosomes stimulate breast cancer metastasis through surface interactions and activation of FAK signaling. Breast Cancer Res Treat 174(1):129–141. https://doi.org/10.1007/s10549-018-5043-0

    Article  CAS  PubMed  Google Scholar 

  55. Smolarz M, Pietrowska M, Matysiak N, Mielańczyk Ł, Widłak P (2019) Proteome profiling of exosomes purified from a small amount of human serum: the problem of co-purified serum components. Proteomes 7(2). https://doi.org/10.3390/proteomes7020018

  56. Zhang W, Ou X, Wu X (2019) Proteomics profiling of plasma exosomes in epithelial ovarian cancer: a potential role in the coagulation cascade, diagnosis and prognosis. Int J Oncol 54(5):1719–1733. https://doi.org/10.3892/ijo.2019.4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, Lötvall J, Lässer C (2018) Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci 75(15):2873–2886. https://doi.org/10.1007/s00018-018-2773-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mithraprabhu S, Morley R, Khong T, Kalff A, Bergin K, Hocking J, Savvidou I, Bowen KM, Ramachandran M, Choi K, Wong BKL, Reynolds J, Spencer A (2019) Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia 33(8):2022–2033. https://doi.org/10.1038/s41375-019-0469-x

    Article  CAS  PubMed  Google Scholar 

  59. Caivano A, Laurenzana I, De Luca L, La Rocca F, Simeon V, Trino S, D’Auria F, Traficante A, Maietti M, Izzo T, D’Arena G, Mansueto G, Pietrantuono G, Laurenti L, Musto P, Del Vecchio L (2015) High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders. Tumour Biol 36(12):9739–9752. https://doi.org/10.1007/s13277-015-3741-3

    Article  CAS  PubMed  Google Scholar 

  60. Rajeev Krishnan S, De Rubis G, Suen H, Joshua D, Lam Kwan Y, Bebawy M (2020) A liquid biopsy to detect multidrug resistance and disease burden in multiple myeloma. Blood Cancer J 10(3):37. https://doi.org/10.1038/s41408-020-0304-7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ge M, Qiao Z, Kong Y, Lu H, Liu H (2020) Exosomes mediate intercellular transfer of non-autonomous tolerance to proteasome inhibitors in mixed-lineage leukemia. Cancer Sci 111(4):1279–1290. https://doi.org/10.1111/cas.14351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harshman SW, Canella A, Ciarlariello PD, Agarwal K, Branson OE, Rocci A, Cordero H, Phelps MA, Hade EM, Dubovsky JA, Palumbo A, Rosko A, Byrd JC, Hofmeister CC, Benson DM, Paulaitis ME, Freitas MA, Pichiorri F (2016) Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers. J Proteome 136:89–98. https://doi.org/10.1016/j.jprot.2015.12.016

    Article  CAS  Google Scholar 

  63. Liu X, Chu KM (2020) Exosomal miRNAs as circulating biomarkers for prediction of development of haematogenous metastasis after surgery for stage II/III gastric cancer. J Cell Mol Med. https://doi.org/10.1111/jcmm.15253

  64. Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, Salem KZ, Huynh D, Glavey SV, Rivotto B, Sacco A, Roccaro AM, Bouyssou J, Minvielle S, Moreau P, Facon T, Leleu X, Weller E, Trippa L, Ghobrial IM (2017) Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 129(17):2429–2436. https://doi.org/10.1182/blood-2016-09-742296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nielsen T, Kristensen SR, Gregersen H, Teodorescu EM, Christiansen G, Pedersen S (2019) Extracellular vesicle-associated procoagulant phospholipid and tissue factor activity in multiple myeloma. PLoS One 14(1):e0210835. https://doi.org/10.1371/journal.pone.0210835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sedlarikova L, Bollova B, Radova L, Brozova L, Jarkovsky J, Almasi M, Penka M, Kuglík P, Sandecká V, Stork M, Pour L, Sevcikova S (2018) Circulating exosomal long noncoding RNA PRINS-First findings in monoclonal gammopathies. Hematol Oncol 36(5):786–791. https://doi.org/10.1002/hon.2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang ZY, Li YC, Geng CY, Wang HJ, Chen WM (2019) Potential relationship between clinical significance and serum exosomal miRNAs in patients with multiple myeloma. Biomed Res Int 2019:1575468. https://doi.org/10.1155/2019/1575468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang ZY, Li YC, Geng CY, Zhou HX, Gao W, Chen WM (2019) Serum exosomal microRNAs as novel biomarkers for multiple myeloma. Hematol Oncol 37(4):409–417. https://doi.org/10.1002/hon.2639

    Article  CAS  PubMed  Google Scholar 

  69. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228. https://doi.org/10.1038/nrm.2017.125

    Article  CAS  PubMed  Google Scholar 

  70. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan M, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, El Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ, Kornek M, Kosanović MM, Kovács Á, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz Á, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-'t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E, Drago D, Alfaro-Cervello C, Saini HK, Davis MP, Schaeffer J, Vega B, Stefanini M, Zhao C, Muller W, Garcia-Verdugo JM, Mathivanan S, Bachi A, Enright AJ, Mattick JS, Pluchino S (2014) Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 56(2):193–204. https://doi.org/10.1016/j.molcel.2014.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766. https://doi.org/10.1182/blood-2011-02-338004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Paolicelli RC, Bergamini G, Rajendran L (2019) Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 405:148–157. https://doi.org/10.1016/j.neuroscience.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  74. Raimondo S, Saieva L, Vicario E, Pucci M, Toscani D, Manno M, Raccosta S, Giuliani N, Alessandro R (2019) Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol 12(1):2. https://doi.org/10.1186/s13045-018-0689-y

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tsutsumi R, Hori Y, Seki T, Kurauchi Y, Sato M, Oshima M, Hisatsune A, Katsuki H (2019) Involvement of exosomes in dopaminergic neurodegeneration by microglial activation in midbrain slice cultures. Biochem Biophys Res Commun 511(2):427–433. https://doi.org/10.1016/j.bbrc.2019.02.076

    Article  CAS  PubMed  Google Scholar 

  76. Menon R, Dixon CL, Sheller-Miller S, Fortunato SJ, Saade GR, Palma C, Lai A, Guanzon D, Salomon C (2019) Quantitative proteomics by SWATH-MS of maternal plasma exosomes determine pathways associated with term and preterm birth. Endocrinology 160(3):639–650. https://doi.org/10.1210/en.2018-00820

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nair S, Jayabalan N, Guanzon D, Palma C, Scholz-Romero K, Elfeky O, Zuñiga F, Ormazabal V, Diaz E, Rice GE, Duncombe G, Jansson T, McIntyre HD, Lappas M, Salomon C (2018) Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity. Clin Sci (Lond) 132(22):2451–2467. https://doi.org/10.1042/CS20180487

    Article  CAS  Google Scholar 

  78. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14(3):195–208. https://doi.org/10.1038/nri3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F (2017) Extracellular vesicles in angiogenesis. Circ Res 120(10):1658–1673. https://doi.org/10.1161/CIRCRESAHA.117.309681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo Y, Ji X, Liu J, Fan D, Zhou Q, Chen C, Wang W, Wang G, Wang H, Yuan W, Ji Z, Sun Z (2019) Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer 18(1):39. https://doi.org/10.1186/s12943-019-0995-1

    Article  PubMed  PubMed Central  Google Scholar 

  81. Han L, Lam EW, Sun Y (2019) Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Mol Cancer 18(1):59. https://doi.org/10.1186/s12943-019-0980-8

    Article  PubMed  PubMed Central  Google Scholar 

  82. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891. https://doi.org/10.1038/nm.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Larssen P, Wik L, Czarnewski P, Eldh M, Löf L, Ronquist KG, Dubois L, Freyhult E, Gallant CJ, Oelrich J, Larsson A, Ronquist G, Villablanca EJ, Landegren U, Gabrielsson S, Kamali-Moghaddam M (2017) Tracing cellular origin of human exosomes using multiplex proximity extension assays. Mol Cell Proteomics 16(8):1547. https://doi.org/10.1074/mcp.A116.064725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu R, Greening DW, Chen M, Rai A, Ji H, Takahashi N, Simpson RJ (2019) Surfaceome of exosomes secreted from the colorectal cancer cell line SW480: peripheral and integral membrane proteins analyzed by proteolysis and TX114. Proteomics 19(8):e1700453. https://doi.org/10.1002/pmic.201700453

    Article  CAS  PubMed  Google Scholar 

  86. Chen M, Xu R, Rai A, Suwakulsiri W, Izumikawa K, Ishikawa H, Greening DW, Takahashi N, Simpson RJ (2019) Distinct shed microvesicle and exosome microRNA signatures reveal diagnostic markers for colorectal cancer. PLoS One 14(1):e0210003. https://doi.org/10.1371/journal.pone.0210003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Das S, Ansel KM, Bitzer M, Breakefield XO, Charest A, Galas DJ, Gerstein MB, Gupta M, Milosavljevic A, MT MM, Patel T, Raffai RL, Rozowsky J, Roth ME, Saugstad JA, Van Keuren-Jensen K, Weaver AM, Laurent LC, Consortium ERC (2019) The extracellular RNA communication consortium: establishing foundational knowledge and technologies for extracellular RNA research. Cell 177(2):231–242. https://doi.org/10.1016/j.cell.2019.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ramirez MI, Amorim MG, Gadelha C, Milic I, Welsh JA, Freitas VM, Nawaz M, Akbar N, Couch Y, Makin L, Cooke F, Vettore AL, Batista PX, Freezor R, Pezuk JA, Rosa-Fernandes L, Carreira ACO, Devitt A, Jacobs L, Silva IT, Coakley G, Nunes DN, Carter D, Palmisano G, Dias-Neto E (2018) Technical challenges of working with extracellular vesicles. Nanoscale 10(3):881–906. https://doi.org/10.1039/c7nr08360b

    Article  CAS  PubMed  Google Scholar 

  89. Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ, Hulett MD, Mathivanan S (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13(22):3354–3364. https://doi.org/10.1002/pmic.201300282

    Article  CAS  PubMed  Google Scholar 

  90. Millioni R, Tolin S, Puricelli L, Sbrignadello S, Fadini GP, Tessari P, Arrigoni G (2011) High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity. PLoS One 6(5):e19603. https://doi.org/10.1371/journal.pone.0019603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pietrowska M, Wlosowicz A, Gawin M, Widlak P (2019) MS-based proteomic analysis of serum and plasma: problem of high abundant components and lights and shadows of albumin removal. Adv Exp Med Biol 1073:57–76. https://doi.org/10.1007/978-3-030-12298-0_3

    Article  CAS  PubMed  Google Scholar 

  92. Campos-Silva C, Suárez H, Jara-Acevedo R, Linares-Espinós E, Martinez-Piñeiro L, Yáñez-Mó M, Valés-Gómez M (2019) High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Sci Rep 9(1):2042. https://doi.org/10.1038/s41598-019-38516-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schlumpberger M, Sprenger-Haussels M, Shaffer JM, Lader E, Skog J, Noerholm M (2015) Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One 10(8):e0136133. https://doi.org/10.1371/journal.pone.0136133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ (2015) A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 1295:179–209. https://doi.org/10.1007/978-1-4939-2550-6_15

    Article  CAS  PubMed  Google Scholar 

  95. Ludwig AK, De Miroschedji K, Doeppner TR, Börger V, Ruesing J, Rebmann V, Durst S, Jansen S, Bremer M, Behrmann E, Singer BB, Jastrow H, Kuhlmann JD, El Magraoui F, Meyer HE, Hermann DM, Opalka B, Raunser S, Epple M, Horn PA, Giebel B (2018) Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J Extracell Vesicles 7(1):1528109. https://doi.org/10.1080/20013078.2018.1528109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stranska R, Gysbrechts L, Wouters J, Vermeersch P, Bloch K, Dierickx D, Andrei G, Snoeck R (2018) Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med 16(1):1. https://doi.org/10.1186/s12967-017-1374-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. van der Pol E, Sturk A, van Leeuwen T, Nieuwland R, Coumans F, group I-S-VW (2018) Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost 16(6):1236–1245. https://doi.org/10.1111/jth.14009

    Article  PubMed  Google Scholar 

  98. Xu R, Greening DW, Rai A, Ji H, Simpson RJ (2015) Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods 87:11–25. https://doi.org/10.1016/j.ymeth.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  99. Aatonen MT, Ohman T, Nyman TA, Laitinen S, Grönholm M, Siljander PR (2014) Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles 3. https://doi.org/10.3402/jev.v3.24692

  100. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799

    Article  CAS  Google Scholar 

  101. Dean WL, Lee MJ, Cummins TD, Schultz DJ, Powell DW (2009) Proteomic and functional characterisation of platelet microparticle size classes. Thromb Haemost 102(4):711–718. https://doi.org/10.1160/TH09-04-243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brahmer A, Neuberger E, Esch-Heisser L, Haller N, Jorgensen MM, Baek R, Möbius W, Simon P, Krämer-Albers EM (2019) Platelets, endothelial cells and leukocytes contribute to the exercise-triggered release of extracellular vesicles into the circulation. J Extracell Vesicles 8(1):1615820. https://doi.org/10.1080/20013078.2019.1615820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jamaly S, Ramberg C, Olsen R, Latysheva N, Webster P, Sovershaev T, Brækkan SK, Hansen JB (2018) Impact of preanalytical conditions on plasma concentration and size distribution of extracellular vesicles using Nanoparticle Tracking Analysis. Sci Rep 8(1):17216. https://doi.org/10.1038/s41598-018-35401-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kannan M, Ahmad F, Saxena R (2019) Platelet activation markers in evaluation of thrombotic risk factors in various clinical settings. Blood Rev 37:100583. https://doi.org/10.1016/j.blre.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  105. Krishnan SR, Luk F, Brown RD, Suen H, Kwan Y, Bebawy M (2016) Isolation of human CD138(+) microparticles from the plasma of patients with multiple myeloma. Neoplasia 18(1):25–32. https://doi.org/10.1016/j.neo.2015.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bowers EC, Hassanin AAI, Ramos KS (2020) In vitro models of exosome biology and toxicology: new frontiers in biomedical research. Toxicol In Vitro 64:104462. https://doi.org/10.1016/j.tiv.2019.02.016

    Article  CAS  PubMed  Google Scholar 

  107. Ferrarini M, Steimberg N, Boniotti J, Berenzi A, Belloni D, Mazzoleni G, Ferrero E (2017) 3D-dynamic culture models of multiple myeloma. Methods Mol Biol 1612:177–190. https://doi.org/10.1007/978-1-4939-7021-6_13

    Article  CAS  PubMed  Google Scholar 

  108. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  109. Kompa AR, Greening DW, Kong AM, McMillan PJ, Fang H, Saxena R, Wong RCB, Lees JG, Sivakumaran P, Newcomb AE, Tannous BA, Kos C, Mariana L, Loudovaris T, Hausenloy DJ, Lim SY (2020) Sustained subcutaneous delivery of secretome of human cardiac stem cells promotes cardiac repair following myocardial infarction. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa088

  110. Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, Emanueli C, Gasecka A, Hendrix A, Hill AF, Lacroix R, Lee Y, van Leeuwen TG, Mackman N, Mäger I, Nolan JP, van der Pol E, Pegtel DM, Sahoo S, Siljander PRM, Sturk G, de Wever O, Nieuwland R (2017) Methodological guidelines to study extracellular vesicles. Circ Res 120(10):1632–1648. https://doi.org/10.1161/CIRCRESAHA.117.309417

    Article  CAS  PubMed  Google Scholar 

  111. Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F, Workshop TIS (2013) Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost. https://doi.org/10.1111/jth.12207

  112. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-'t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2. https://doi.org/10.3402/jev.v2i0.20360

  113. Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 126(4):1152–1162. https://doi.org/10.1172/JCI81129

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bæk R, Søndergaard EK, Varming K, Jørgensen MM (2016) The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Methods 438:11–20. https://doi.org/10.1016/j.jim.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  115. Barrachina MN, Calderón-Cruz B, Fernandez-Rocca L, García Á (2019) Application of extracellular vesicles proteomics to cardiovascular disease: guidelines, data analysis, and future perspectives. Proteomics 19(1–2):e1800247. https://doi.org/10.1002/pmic.201800247

    Article  CAS  PubMed  Google Scholar 

  116. Fendl B, Weiss R, Fischer MB, Spittler A, Weber V (2016) Characterization of extracellular vesicles in whole blood: influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry. Biochem Biophys Res Commun 478(1):168–173. https://doi.org/10.1016/j.bbrc.2016.07.073

    Article  CAS  PubMed  Google Scholar 

  117. George N (2018) Evaluation of available blood collection tubes for use in stabilizing concentrations of extracellular vesicles/exosomes and associated cell-free RNA—Abstract 4586. Paper presented at the proceedings of the american association for cancer research annual meeting Philadelphia (PA)

    Google Scholar 

  118. Sparrow RL, Simpson RJ, Greening DW (2017) A protocol for the preparation of cryoprecipitate and cryo-depleted plasma for proteomic studies. Methods Mol Biol 1619:23–30. https://doi.org/10.1007/978-1-4939-7057-5_2

    Article  CAS  PubMed  Google Scholar 

  119. Görgens A, Bremer M, Ferrer-Tur R, Murke F, Tertel T, Horn PA, Thalmann S, Welsh JA, Probst C, Guerin C, Boulanger CM, Jones JC, Hanenberg H, Erdbrügger U, Lannigan J, Ricklefs FL, El-Andaloussi S, Giebel B (2019) Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J Extracell Vesicles 8(1):1587567. https://doi.org/10.1080/20013078.2019.1587567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Welsh JA, Van Der Pol E, Arkesteijn GJA, Bremer M, Brisson A, Coumans F, Dignat-George F, Duggan E, Ghiran I, Giebel B, Görgens A, Hendrix A, Lacroix R, Lannigan J, Libregts SFWM, Lozano-Andrés E, Morales-Kastresana A, Robert S, De Rond L, Tertel T, Tigges J, De Wever O, Yan X, Nieuwland R, Wauben MHM, Nolan JP, Jones JC (2020) MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles 9(1):1713526. https://doi.org/10.1080/20013078.2020.1713526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lehrich BM, Liang Y, Khosravi P, Federoff HJ, Fiandaca MS (2018) Fetal bovine serum-derived extracellular vesicles persist within vesicle-depleted culture media. Int J Mol Sci 19(11). https://doi.org/10.3390/ijms19113538

  122. Durcin M, Fleury A, Taillebois E, Hilairet G, Krupova Z, Henry C, Truchet S, Trötzmüller M, Köfeler H, Mabilleau G, Hue O, Andriantsitohaina R, Martin P, Le Lay S (2017) Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles 6(1):1305677. https://doi.org/10.1080/20013078.2017.1305677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Osti D, Del Bene M, Rappa G, Santos M, Matafora V, Richichi C, Faletti S, Beznoussenko GV, Mironov A, Bachi A, Fornasari L, Bongetta D, Gaetani P, DiMeco F, Lorico A, Pelicci G (2019) Clinical significance of extracellular vesicles in plasma from glioblastoma patients. Clin Cancer Res 25(1):266–276. https://doi.org/10.1158/1078-0432.CCR-18-1941

    Article  CAS  PubMed  Google Scholar 

  124. Oggero S, Austin-Williams S, Norling LV (2019) The contrasting role of extracellular vesicles in vascular inflammation and tissue repair. Front Pharmacol 10:1479. https://doi.org/10.3389/fphar.2019.01479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Serrano-Pertierra E, Oliveira-Rodríguez M, Rivas M, Oliva P, Villafani J, Navarro A, Blanco-López MC, Cernuda-Morollón E (2019) Characterization of plasma-derived extracellular vesicles isolated by different methods: a comparison study. Bioengineering (Basel) 6(1). https://doi.org/10.3390/bioengineering6010008

  126. Savvidou I, Khong T, Cuddihy A, McLean C, Horrigan S, Spencer A (2017) β-catenin inhibitor BC2059 is efficacious as monotherapy or in combination with proteasome inhibitor bortezomib in multiple myeloma. Mol Cancer Ther 16(9):1765–1778. https://doi.org/10.1158/1535-7163.MCT-16-0624

    Article  CAS  PubMed  Google Scholar 

  127. Bachurski D, Schuldner M, Nguyen PH, Malz A, Reiners KS, Grenzi PC, Babatz F, Schauss AC, Hansen HP, Hallek M, Pogge von Strandmann E (2019) Extracellular vesicle measurements with nanoparticle tracking analysis—an accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles 8(1):1596016. https://doi.org/10.1080/20013078.2019.1596016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cizmar P, Yuana Y (2017) Detection and characterization of extracellular vesicles by transmission and cryo-transmission electron microscopy. Methods Mol Biol 1660:221–232. https://doi.org/10.1007/978-1-4939-7253-1_18

    Article  CAS  PubMed  Google Scholar 

  129. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, Anderson KC, Scadden DT, Ghobrial IM (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 123(4):1542–1555. https://doi.org/10.1172/JCI66517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Suttapitugsakul S, Xiao H, Smeekens J, Wu R (2017) Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics. Mol BioSyst 13(12):2574–2582. https://doi.org/10.1039/c7mb00393e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tsiatsiani L, Heck AJ (2015) Proteomics beyond trypsin. FEBS J 282(14):2612–2626. https://doi.org/10.1111/febs.13287

    Article  CAS  PubMed  Google Scholar 

  132. Wu Z, Huang J, Li Q, Zhang X (2018) Lys-C/Arg-C, a more specific and efficient digestion approach for proteomics studies. Anal Chem 90(16):9700–9707. https://doi.org/10.1021/acs.analchem.8b02448

    Article  CAS  PubMed  Google Scholar 

  133. Asara JM, Christofk HR, Freimark LM, Cantley LC (2008) A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 8(5):994–999. https://doi.org/10.1002/pmic.200700426

    Article  CAS  PubMed  Google Scholar 

  134. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  135. Häkkinen J, Vincic G, Månsson O, Wårell K, Levander F (2009) The proteios software environment: an extensible multiuser platform for management and analysis of proteomics data. J Proteome Res 8(6):3037–3043. https://doi.org/10.1021/pr900189c

    Article  CAS  PubMed  Google Scholar 

  136. Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342. https://doi.org/10.1002/rcm.1196

    Article  CAS  PubMed  Google Scholar 

  137. Ramus C, Hovasse A, Marcellin M, Hesse AM, Mouton-Barbosa E, Bouyssié D, Vaca S, Carapito C, Chaoui K, Bruley C, Garin J, Cianférani S, Ferro M, Van Dorssaeler A, Burlet-Schiltz O, Schaeffer C, Couté Y, Gonzalez de Peredo A (2016) Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset. J Proteome 132:51–62. https://doi.org/10.1016/j.jprot.2015.11.011

    Article  CAS  Google Scholar 

  138. Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163. https://doi.org/10.1186/1471-2105-9-163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Monash University, Melbourne, Australia—Australian Government Training Program (RTP) scholarship and Monash Departmental Scholarship (AR). This work was also funded by NHMRC project grants (#1057741 and #1139489; DWG), Helen Amelia Hains Fellowship (DWG). The authors acknowledge Prof. Richard Simpson, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia for access to equipment and expertise employed in this study. We also acknowledge AMREP Flow Cytometry Core Facility (85 Commercial Road, Melbourne, VIC, Australia), Malarmathy Ramachandran and Kawa Choi (Myeloma Research Group, Monash University/The Alfred Hospital, Melbourne, VIC, Australia), Haoyun Alexandra Fang, Molecular Proteomics (Baker Heart and Diabetes Institute, Melbourne, VIC, Australia), Dr. Julian Ratcliffe and Dr. Peter Lock (LIMS BioImaging Facility, La Trobe University, Melbourne, VIC, Australia) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Greening .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reale, A. et al. (2021). Human Plasma Extracellular Vesicle Isolation and Proteomic Characterization for the Optimization of Liquid Biopsy in Multiple Myeloma. In: Posch, A. (eds) Proteomic Profiling. Methods in Molecular Biology, vol 2261. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1186-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1186-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1185-2

  • Online ISBN: 978-1-0716-1186-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics