Skip to main content

Advertisement

Log in

Gene polymorphisms in the folate metabolism and their association with MTX-related adverse events in the treatment of ALL

  • Review
  • Published:
Tumor Biology

Abstract

The antifolate drug methotrexate (MTX) is widely used in the treatment of various neoplastic diseases, including acute lymphoblastic leukemia (ALL). MTX significantly increases cure rates and improves patients’ prognosis. Despite that it achieved remarkable clinical success, a large number of patients still suffer from treatment toxicities or side effects. Even to this date, chemotherapeutic regiments have not been personalized because of interindividual differences that affect MTX response, especially polymorphisms in key genes. The pharmacological pathway of MTX in cells is useful to identify gene polymorphisms that influence the process of treatment. The aim of this review was to discuss the gene polymorphisms of drug-metabolizing enzymes in the MTX pathway and their toxicities on ALL treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ansari M, Krajinovic M. Pharmacogenomics in cancer treatment defining genetic bases for inter-individual differences in responses to chemotherapy. Curr Opin Pediatr. 2007;19:15–22.

    Article  PubMed  Google Scholar 

  2. Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36:277–85.

    Article  PubMed  Google Scholar 

  3. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354:166–78.

    Article  CAS  PubMed  Google Scholar 

  4. Kodidela S, Suresh Chandra P, Dubashi B. Pharmacogenetics of methotrexate in acute lymphoblastic leukaemia: why still at the bench level? Eur J Clin Pharmacol. 2014;70:253–60.

    Article  CAS  PubMed  Google Scholar 

  5. Kapoor G, Sinha R, Abedin S. Experience with high dose methotrexate therapy in childhood acute lymphoblastic leukemia in a tertiary care cancer centre of a developing country. Pediatr Blood Cancer. 2012;59:448–53.

    Article  PubMed  Google Scholar 

  6. Salazar J, Altés A, del Río E, et al. Methotrexate consolidation treatment according to pharmacogenetics of MTHFR ameliorates even-free survival in childhood acute lympho-blastic leukaemia. Pharmacogenomics J. 2012;12:379–85.

    Article  CAS  PubMed  Google Scholar 

  7. Niedzielska E, Węcławek-Tompol J, Matkowska-Kocjan A, et al. The influence of genetic RFC1, MS and MTHFR polymorphisms on the risk of acute lymphoblastic leukemia relapse in children and the adverse effects of methotrexate. Adv Clin Exp Med. 2013;22:579–84.

    PubMed  Google Scholar 

  8. Cheok MH, Evans WE. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer. 2006;6:117–29.

    Article  CAS  PubMed  Google Scholar 

  9. Radtke S, Zolk O, Renner B, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013;121:5145–53.

    Article  CAS  PubMed  Google Scholar 

  10. McGuire JJ, Bertino JR. Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem. 1981;38(Spec No(Pt 1)):19–48.

    Article  CAS  PubMed  Google Scholar 

  11. Organista-Nava J, Gómez-Gómez Y, Saavedra-Herrera MV, et al. Polymorphisms of the gamma-glutamyl hydrolase gene and risk of relapse to acute lymphoblastic leukemia in Mexico. Leuk Res. 2010;34:728–32.

    Article  CAS  PubMed  Google Scholar 

  12. Garcia-Bournissen F, Moghrabi A, Krajinovic M. Therapeutic responses in childhood acute lymphoblastic leukemia (ALL) and haplotypes of gamma glutamyl hydrolase (GGH) gene. Leuk Res. 2007;31:1023–5.

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Goodey NM, Benkovic SJ, et al. Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase. Proc Natl Acad Sci U S A. 2006;103:15753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krajinovic M, Moghrabi A. Pharmacogenetics of methotrexate. Pharmacogenomics. 2004;5:819–34.

    Article  CAS  PubMed  Google Scholar 

  15. Bagley PJ, Selhub J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci U S A. 1998;95:13217–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ansari M, St-Onge G, Krajinovic M. Pharmacogenomics of acute lymphoblastic leukemia. Med Sci (Paris). 2007;23:961–7.

    Article  Google Scholar 

  17. Schmiegelow K. Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol. 2009;146:489–503.

    Article  CAS  PubMed  Google Scholar 

  18. Huang Y. Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy. Cancer Metastasis Rev. 2007;26:183–201.

    Article  CAS  PubMed  Google Scholar 

  19. Chiabai MA, Lins TC, Pogue R, et al. Population analysis of pharmacogenetic polymorphisms related to acute lymphoblastic leukemia drug treatment. Dis Markers. 2012;32:247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiusolo P, Giammarco S, Bellesi S, et al. The role of MTHFR and RFC1 polymorphisms on toxicity and outcome of adult patients with hematological malignancies treated with high-dose methotrexate followed by leucovorin rescue. Cancer Chemother Pharmacol. 2012;69:691–6.

    Article  CAS  PubMed  Google Scholar 

  21. Gregers J, Christensen IJ, Dalhoff K, et al. The association of reduced folate carrier 80G > A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood. 2010;115:4671–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kishi S, Cheng C, French D, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood. 2007;109:4151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He HR, Liu P, He GH, et al. Association between reduced folate carrier G80A polymorphism and methotrexate toxicity in childhood acute lymphoblastic leukemia: a meta-analysis. Leuk Lymphoma. 2014;55:2793–800.

    Article  CAS  PubMed  Google Scholar 

  24. de Jonge R, Hooijberg JH, van Zelst BD, et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood. 2005;106:717–20.

    Article  PubMed  Google Scholar 

  25. Rocha JC, Cheng C, Liu W, et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood. 2005;105:4752–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang L, Tissing WJ, de Jonge R, et al. Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia. 2008;22:1798–800.

    Article  CAS  PubMed  Google Scholar 

  27. Kishi S, Griener J, Cheng C, et al. Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clin Oncol. 2003;21:3084–91.

    Article  CAS  PubMed  Google Scholar 

  28. Pakakasama S, Kanchanakamhaeng K, Kajanachumpol S, et al. Genetic polymorphisms of folate metabolic enzymes and toxicities of high dose methotrexate in children with acute lymphoblastic leukemia. Ann Hematol. 2007;86:609–11.

    Article  PubMed  Google Scholar 

  29. Shimasaki N, Mori T, Torii C, et al. Influence of MTHFR and RFC1 polymorphisms on toxicities during maintenance chemotherapy for childhood acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol. 2008;30:347–52.

    Article  CAS  PubMed  Google Scholar 

  30. Faganel Kotnik B, Grabnar I, Bohanec Grabar P, et al. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol. 2011;67:993–1006.

    Article  CAS  PubMed  Google Scholar 

  31. Shimasaki N, Mori T, Samejima H, et al. Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol. 2006;28:64–8.

    Article  CAS  PubMed  Google Scholar 

  32. Imanishi H, Okamura N, Yagi M, et al. Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet. 2007;52:166–71.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang HN, He XL, Wang C, et al. Impact of SLCO1B1 521T > C variant on leucovorin rescue and risk of relapse in childhood acute lymphoblastic leukemia treated with high-dose methotrexate. Pediatr Blood Cancer. 2014;61:2203–7.

    Article  CAS  PubMed  Google Scholar 

  34. Trevin˜o LR, Shimasaki N, Yang W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27:5972–8.

    Article  Google Scholar 

  35. Zhang H, He X, Li J, et al. SLCO1B1c. 521T > C gene polymorphisms are associated with high-dose methotrexate pharmacokinetics and clinical outcome of pediatric acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi. 2014;52:770–6. Chinese.

    PubMed  Google Scholar 

  36. Lopez-Lopez E, Ballesteros J, Piñan MA, et al. Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet Genomics. 2013;23:53–61.

    Article  CAS  PubMed  Google Scholar 

  37. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57:612–9.

    Article  PubMed  Google Scholar 

  38. Ramsey LB, Panetta JC, Smith C, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013;121:898–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Yin Y, Sheng Q, et al. Association of ABCC2 -24C > T polymorphism with high-dose methotrexate plasma concentrations and toxicities in childhood acute lymphoblastic leukemia. PLoS One. 2014;9, e82681.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rau T, Erney B, Göres R, et al. High-dose methotrexate in pediatric acute lymphoblastic leukemia: impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther. 2006;80:468–76.

    Article  CAS  PubMed  Google Scholar 

  41. Sharifi MJ, Bahoush G, Zaker F, et al. Association of -24CT, 1249GA, and 3972CT ABCC2 gene polymorphisms with methotrexate serum levels and toxic side effects in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2014;31:169–77.

    Article  CAS  PubMed  Google Scholar 

  42. El Mesallamy HO, Rashed WM, Hamdy NM, et al. High-dose methotrexate in Egyptian pediatric acute lymphoblastic leukemia: the impact of ABCG2 C421A genetic polymorphism on plasma levels, what is next? J Cancer Res Clin Oncol. 2014;140:1359–65.

    Article  PubMed  Google Scholar 

  43. Ansari M, Sauty G, Labuda M, et al. Polymorphism in multidrug resistance-associated protein gene 3 is associated with outcomes in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2012;12:386–94.

    Article  CAS  PubMed  Google Scholar 

  44. Ansari M, Sauty G, Labuda M, et al. Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood. 2009;114:1383–6.

    Article  CAS  PubMed  Google Scholar 

  45. Suthandiram S, Gan GG, Zain SM, et al. Effect of polymorphisms within methotrexate pathway genes on methotrexate toxicity and plasma levels in adults with hematological malignancies. Pharmacogenomics. 2014;15:1479–94.

    Article  CAS  PubMed  Google Scholar 

  46. Liani E, Rothem L, Bunni MA, et al. Loss of folylpolygamma-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. Int J Cancer. 2003;103:587–99.

    Article  CAS  PubMed  Google Scholar 

  47. Liu SG, Gao C, Li ZG, et al. Correlation analysis of FPGS rs10760502G > a polymorphism with prognosis and MTX-related toxicity in pediatric B-cell acute lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2014;22:291–7. doi:10.7534/j.issn.1009-2137. 2014.02.006. Chinese.

    CAS  PubMed  Google Scholar 

  48. Liu SG, Gao C, Zhang RD, et al. FPGS rs1544105 polymorphism is associated with treatment outcome in pediatric B-cell precursor acute lymphoblastic leukemia. Cancer Cell Int. 2013;13:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koomdee N, Hongeng S, Apibal S, et al. Association between polymorphisms of dihydrofolate reductase and gamma glutamyl hydrolase genes and toxicity of high dose methotrexate in children with acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2012;13:3461–4.

    Article  PubMed  Google Scholar 

  50. Chen X, Wen F, Yue L, et al. Genetic polymorphism of γ-glutamyl hydrolase in Chinese acute leukemia children and identification of a novel double nonsynonymous mutation. Pediatr Hematol Oncol. 2012;29:303–12.

    Article  CAS  PubMed  Google Scholar 

  51. Xu X, Gammon MD, Wetmur JG, et al. A functional 19-base pair deletion polymorphism of dihydrofolate reductase (DHFR) and risk of breast cancer in multivitamin users. Am J Clin Nutr. 2007;85:1098–102.

    CAS  PubMed  Google Scholar 

  52. Gómez-Gómez Y, Organista-Nava J, Saavedra-Herrera MV, et al. Survival and risk of relapse of acute lymphoblastic leukemia in a Mexican population is affected by dihydrofolate reductase gene polymorphisms. Exp Ther Med. 2012;3:665–72.

    PubMed  PubMed Central  Google Scholar 

  53. Ongaro A, De Mattei M, Della Porta MG, et al. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica. 2009;94:1391–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Danenberg PV. Thymidylate synthetase—a target enzyme in cancer chemotherapy. Biochim Biophys Acta. 1977;473:73–92.

    CAS  PubMed  Google Scholar 

  55. Mandola MV, Stoehlmacher J, Muller-Weeks S, et al. A novel single nucleotide polymorphism within the 5’ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res. 2003;63:2898–904.

    CAS  PubMed  Google Scholar 

  56. Skibola CF, Smith MT, Hubbard A, Shane B, Roberts AC, Law GR, et al. Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood. 2002;99:3786–91.

    Article  CAS  PubMed  Google Scholar 

  57. Erčulj N, Kotnik BF, Debeljak M, et al. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53:1096–104.

    Article  PubMed  Google Scholar 

  58. Krajinovic M, Lemieux-Blanchard E, Chiasson S, et al. Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2004;4:66–72.

    Article  CAS  PubMed  Google Scholar 

  59. Skibola CF, Smith MT, Kane E, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A. 1999;96:12810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Narayanan S, McConnell J, Little J, et al. Associations between two common variants C677T and A1298C in the methylenetetrahydrofolate reductase gene and measures of folate metabolism and DNA stability (strand breaks, misincorporated uracil, and DNA methylation status) in human lymphocytes in vivo. Cancer Epidemiol Biomarkers Prev. 2004;13:1436–43.

    CAS  PubMed  Google Scholar 

  61. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.

    Article  CAS  PubMed  Google Scholar 

  62. Haase R, Elsner K, Merkel N, et al. High dose methotrexate treatment in childhood ALL: pilot study on the impact of the MTHFR 677C > T and 1298A > C polymorphisms on MTX-related toxicity. Klin Padiatr. 2012;224:156–9.

    Article  CAS  PubMed  Google Scholar 

  63. EL-Khodary NM, El-Haggar SM, Eid MA, et al. Study of the pharmacokinetic and pharmacogenetic contribution to the toxicity of high-dose methotrexate in children with acute lymphoblastic leukemia. Med Oncol. 2012;29:2053–62.

    Article  CAS  PubMed  Google Scholar 

  64. Chiusolo P, Reddiconto G, Casorelli I, et al. Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Ann Oncol. 2002;13:1915–8.

    Article  CAS  PubMed  Google Scholar 

  65. Yang L, Hu X, Xu L. Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumour Biol. 2012;33:1445–54.

    Article  CAS  PubMed  Google Scholar 

  66. Ruiz-Argüelles GJ, Coconi-Linares LN, Garcés-Eisele J, et al. Methotrexate-induced mucositis in acute leukemia patients is not associated with the MTHFR 677T allele in Mexico. Hematology. 2007;12:387–91.

    Article  PubMed  Google Scholar 

  67. Krull KR, Brouwers P, Jain N, et al. Folate pathway genetic polymorphisms are related to attention disorders in childhood leukemia survivors. J Pediatr. 2008;152:101–5.

    Article  CAS  PubMed  Google Scholar 

  68. Liu JX, Chen JP, Tan W, et al. Association between mthfr gene polymorphisms and toxicity of HDMTX chemotherapy in acute lymphocytic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2008;16:488–92. Chinese.

    CAS  PubMed  Google Scholar 

  69. Tantawy AA, El-Bostany EA, Adly AA, et al. Methylene tetrahydrofolate reductase gene polymorphism in Egyptian children with acute lymphoblastic leukemia. Blood Coagul Fibrinolysis. 2010;21:28–34.

    Article  CAS  PubMed  Google Scholar 

  70. Karathanasis NV, Stiakaki E, Goulielmos GN, et al. The role of the methylenetetrahydrofolate reductase 677 and 1298 polymorphisms in Cretan children with acute lymphoblastic leukemia. Genet Test Mol Biomarkers. 2011;15:5–10.

    Article  CAS  PubMed  Google Scholar 

  71. Liu SG, Li ZG, Cui L, et al. Effects of methylenetetrahydrofolate reductase gene polymorphisms on toxicities during consolidation therapy in pediatric acute lymphoblastic leukemia in a Chinese population. Leuk Lymphoma. 2011;52:1030–40.

    Article  CAS  PubMed  Google Scholar 

  72. D'Angelo V, Ramaglia M, Iannotta A, et al. Methotrexate toxicity and efficacy during the consolidation phase in paediatric acute lymphoblastic leukaemia and MTHFR polymorphisms as pharmacogenetic determinants. Cancer Chemother Pharmacol. 2011;68:1339–46.

    Article  PubMed  Google Scholar 

  73. Li TY, Wang B, Xu KK, et al. Polymorphism C677T in methylenetetrahydrofolate reductase gene and its relationship to methotrexate-induced toxicities of childhood acute lymphoblastic leukemia. Acta Univ Med Nanjing (Nat Sci). 2010;30:386-9–404. Chinese.

    Google Scholar 

  74. Chiusolo P, Reddiconto G, Farina G, et al. MTHFR polymorphisms’ influence on outcome and toxicity in acute lymphoblastic leukemia patients. Leuk Res. 2007;31:1669–74.

    Article  CAS  PubMed  Google Scholar 

  75. Ayad MW, El Naggar AA, El Naggar M. MTHFR C677T polymorphism: association with lymphoid neoplasm and effect on methotrexate therapy. Eur J Haematol. 2014;93:63–9.

    Article  CAS  PubMed  Google Scholar 

  76. Seidemann K, Book M, Zimmermann M, et al. MTHFR 677 (C– > T) polymorphism is not relevant for prognosis or therapy-associated toxicity in pediatric NHL: results from 484 patients of multicenter trial NHL-BFM 95. Ann Hematol. 2006;85:291–300.

    Article  CAS  PubMed  Google Scholar 

  77. Liao QC, Li XL, Liu ST, et al. Association between the methylenetetrahydrofolate reductase gene polymorphisms and haplotype with toxicity response of high dose methotrexate chemotherapy. Zhonghua Liu Xing Bing Xue Za Zhi. 2012;33:735–9. Chinese.

    CAS  PubMed  Google Scholar 

  78. Hum DW, Bell AW, Rozen R, et al. Primary structure of a human trifunctional enzyme. Isolation of a cDNA encoding methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. J Biol Chem. 1988;263:15946–50.

    CAS  PubMed  Google Scholar 

  79. Hol FA, van der Put NM, Geurds MP, et al. Molecular genetic analysis of the gene encoding the trifunctional enzyme MTHFD (methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase) in patients with neural tube defects. Clin Genet. 1998;53:119–25.

    Article  CAS  PubMed  Google Scholar 

  80. Leclerc D, Campeau E, Goyette P, et al. A. Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Hum Mol Genet. 1996;5:1867–74.

    Article  CAS  PubMed  Google Scholar 

  81. Brown CA, McKinney KQ, Kaufman JS, et al. A common polymorphism in methionine synthase reductase increases risk of premature coronary artery disease. J Cardiovasc Risk. 2000;7:197–200.

    Article  CAS  PubMed  Google Scholar 

  82. Costea I, Moghrabi A, Krajinovic M. The influence of cyclin D1 (CCND1) 870A > G polymorphism and CCND1-thymidylate synthase (TS) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics. 2003;13:577–80.

    Article  CAS  PubMed  Google Scholar 

  83. Hosokawa Y, Tu T, Tahara H, et al. Absence of cyclin D1/PRAD1 point mutations in human breast cancers and parathyroid adenomas and identification of a new cyclin D1 gene polymorphism. Cancer Lett. 1995;93:165–70.

    Article  CAS  PubMed  Google Scholar 

  84. Costea I, Moghrabi A, Laverdiere C, et al. Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. Haematologica. 2006;91:1113–6.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuojun Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Shen, Z. Gene polymorphisms in the folate metabolism and their association with MTX-related adverse events in the treatment of ALL. Tumor Biol. 36, 4913–4921 (2015). https://doi.org/10.1007/s13277-015-3602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3602-0

Keywords

Navigation