Skip to main content

Advertisement

Log in

Downregulation of TRIM21 contributes to hepatocellular carcinoma carcinogenesis and indicates poor prognosis of cancers

  • Research Article
  • Published:
Tumor Biology

Abstract

The aim of our work is to clarify the clinical implication and functional role of tripartite motif 21 (TRIM21) in hepatocellular carcinoma (HCC). We validated that TRIM21 was downregulated in liver cancer samples by immunohistochemical (IHC) staining. We also demonstrated that its downregulation was associated with several clinicopathologic features such as tumor numbers, T stage, Barcelona Clinic Liver Cancer (BCLC) stage, and Cancer of the Liver Italian Program (CLIP) stage of HCC patients. Importantly, the expression of TRIM21 in tumor samples is significantly correlated with the prognosis of the patients. We further silenced TRIM21 in HCC cell HepG2 and LM3 and confirmed that TRIM21 silencing will promote cancer cell proliferation (CCK-8 assay), colony forming (plate colony-forming assay), migration (transwell assay), and the ability of antiapoptosis (annexin V-FITC/PI staining) in vitro. Then, we predicted gene sets influenced by TRIM21 by using bioinformatic tools. For the first time, we prove that TRIM21 is a potential tumor suppressor in HCC and its low expression indicates poor prognosis. Our findings provide useful insight into the mechanism of HCC origin and progression and offer clues to novel HCC therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E. Forman D. Global Cancer Stat. 2011;61:69–90.

    Google Scholar 

  2. Kishi Y, Shimada K, Nara S, Esaki M, Kosuge T. Role of hepatectomy for recurrent or initially unresectable hepatocellular carcinoma. World J Hepatol. 2014;6:836–43.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ikeda K, Inoue S. TRIM proteins as RING finger E3 ubiquitin ligases. Adv Exp Med Biol. 2012;770:27–37.

    Article  CAS  PubMed  Google Scholar 

  4. Schwamborn JC, Berezikov E, Knoblich JA. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell. 2009;136:913–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Uchil PD, Pawliczek T, Reynolds TD, Ding S, Hinz A, Munro JB, et al. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. J Cell Sci. 2014;127:3928–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cambiaghi V, Giuliani V, Lombardi S, Marinelli C, Toffalorio F, Pelicci PG. TRIM proteins in cancer. Adv Exp Med Biol. 2012;770:77–91.

    Article  CAS  PubMed  Google Scholar 

  7. Kawai T, Akira S. Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins. EMBO Mol Med. 2011;3:513–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petrera F, Meroni G. TRIM proteins in development. Adv Exp Med Biol. 2012;770:131–41.

    Article  CAS  PubMed  Google Scholar 

  9. Kanno Y, Watanabe M, Kimura T, Nonomura K, Tanaka S, Hatakeyama S. TRIM29 as a novel prostate basal cell marker for diagnosis of prostate cancer. Acta Histochem. 2014;116:708–12.

    Article  CAS  PubMed  Google Scholar 

  10. Bell JL, Malyukova A, Kavallaris M, Marshall GM, Cheung BB. TRIM16 inhibits neuroblastoma cell proliferation through cell cycle regulation and dynamic nuclear localization. Cell Cycle. 2013;12:889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Raheja R, Yeh N, Ciznadija D, Pedraza AM, Ozawa T, et al. TRIM3, a tumor suppressor linked to regulation of p21 (Waf1/Cip1). Oncogene. 2014;33:308–15.

    Article  CAS  PubMed  Google Scholar 

  12. Reddy BA, van der Knaap JA, Bot AG, Mohd-Sarip A, Dekkers DH, Timmermans MA, et al. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol Cell. 2014;53:458–70.

    Article  CAS  PubMed  Google Scholar 

  13. McEwan WA, James LC. TRIM21-dependent intracellular antibody neutralization of virus infection. Prog Mol Biol Transl Sci. 2015;129:167–87.

    Article  CAS  PubMed  Google Scholar 

  14. Kyriakidis NC, Kapsogeorgou EK, Gourzi VC, Konsta OD, Baltatzis GE, Tzioufas AG. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway. Clin Exp Immunol. 2014;178:548–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Young JA, Sermwittayawong D, Kim HJ, Nandu S, An N, Erdjument-Bromage H, et al. Fas-associated death domain (FADD) and the E3 ubiquitin-protein ligase TRIM21 interact to negatively regulate virus-induced interferon production. J Biol Chem. 2011;286:6521–31.

    Article  CAS  PubMed  Google Scholar 

  16. Espinosa A, Zhou W, Ek M, Hedlund M, Brauner S, Popovic K, et al. The Sjogren’s syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. J Immunol. 2006;176:6277–85.

    Article  CAS  PubMed  Google Scholar 

  17. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 2010;70:10202–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10:e1001453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med. 2013;5:186ra66.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Menéndez A, Gómez J, Escanlar E, Caminal-Montero L, Mozo L. Clinical associations of anti-SSA/Ro60 and anti-Ro52/TRIM21 antibodies: Diagnostic utility of their separate detection. Autoimmunity. 2013;46:32–9.

    Article  PubMed  Google Scholar 

  21. Oke V, Wahren-Herlenius M. The immunobiology of Ro52 (TRIM21) in autoimmunity: a critical review. J Autoimmun. 2012;39:77–82.

    Article  CAS  PubMed  Google Scholar 

  22. Vaysburd M, Watkinson RE, Cooper H, Reed M, O’Connell K, Smith J, et al. Intracellular antibody receptor TRIM21 prevents fatal viral infection. Proc Natl Acad Sci U S A. 2013;110:12397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Higgs R, Ní Gabhann J, Ben Larbi N, Breen EP, Fitzgerald KA, Jefferies CA. The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol. 2008;181:1780–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol. 2013;14:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee OH, Lee J, Lee KH, Woo YM, Kang JH, Yoon HG, et al. Role of the focal adhesion protein TRIM15 in colon cancer development. Biochim Biophys Acta. 1853;2015:409–21.

    Google Scholar 

  26. Chen N, Balasenthil S, Reuther J, Killary AM. DEAR1, a novel tumor suppressor that regulates cell polarity and epithelial plasticity. Cancer Res. 2014;74:5683–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quintás-Cardama A, Post SM, Solis LM, Xiong S, Yang P, Chen N, et al. Loss of the novel tumour suppressor and polarity gene Trim62 (Dear1) synergizes with oncogenic Ras in invasive lung cancer. J Pathol. 2014;234:108–19.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jia D, Wei L, Guo W, Zha R, Bao M, Chen Z, et al. Genome-wide copy number analyses identified novel cancer genes in hepatocellular carcinoma. Hepatology. 2011;54:1227–36.

    Article  CAS  PubMed  Google Scholar 

  29. Herquel B, Ouararhni K, Khetchoumian K, Ignat M, Teletin M, Mark M, et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2011;108:8212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jauharoh SN, Saegusa J, Sugimoto T, Ardianto B, Kasagi S, Sugiyama D, et al. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production. Biochem Biophys Res Commun. 2012;417:582–7.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Fang L, Zhu X, Qiao Y, Yu M, Wang L, et al. Ro52/SSA sensitizes cells to death receptor-induced apoptosis by down-regulating c-FLIP (L). Cell Biol Int. 2012;36:463–8.

    Article  CAS  PubMed  Google Scholar 

  32. He P, Tang ZY, Ye SL, Liu BB, Liu YK. The targeted expression of interleukin-2 in human hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2000;19:183–7.

    CAS  PubMed  Google Scholar 

  33. Palmieri G, Montella L, Milo M, Fiore R, Biondi E, Bianco AR, et al. Ultra-low dose interleukin-2 in unresectable hepatocellular carcinoma. Am J Clin Oncol. 2002;25:224–6.

    Article  PubMed  Google Scholar 

  34. Ikeguchi M, Hirooka Y. Interleukin-2 gene expression is a new biological prognostic marker in hepatocellular carcinomas. Onkologie. 2005;28:255–9.

    CAS  PubMed  Google Scholar 

  35. Ishii T, Ohnuma K, Murakami A, Takasawa N, Yamochi T, Iwata S, et al. SS-A/Ro52, an autoantigen involved in CD28-mediated IL-2 production. J Immunol. 2003;170:3653–61.

    Article  CAS  PubMed  Google Scholar 

  36. Wada K, Niida M, Tanaka M, Kamitani T. Ro52-mediated monoubiquitination of IKKβ down-regulates NF-kB signalling. J Biochem. 2009;146:821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Erstad DJ, Cusack Jr JC. Targeting the NF-κB pathway in cancer therapy. Surg Oncol Clin N Am. 2013;22:705–46.

    Article  PubMed  Google Scholar 

  38. Zheng T, Hong X, Wang J, Pei T, Liang Y, Yin D, et al. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma. Hepatology. 2014;59:935–46.

    Article  CAS  PubMed  Google Scholar 

  39. Kim YC, Cao Y, Pitterle DM, O’Briant KC, Bepler G. SSA/RO52gene and expressed sequence tags in an 85 kb region of chromosome segment 11p15.5. Int J Cancer. 2000;87:61–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author would thank Liu Can from College of Chinese Language and Literature, Wuhan University for her kind encouragement. The authors also would like to thank Dr. Wang Bicheng and Dr. Zeng Zhi for the technical help on pathology. The study was supported by the Natural Science Foundation of China (No. 81272963 and No. 81172350).

Authors’ contributions

Conceived and designed the experiments: QD, HY.

Performed the experiments: QD, DH, HL, XW.

Contributed funds/reagents/materials: KH, GX, HY.

Wrote the paper: QD, QZ, MT, JD.

All authors read and approved the final manuscript.

Conflicts of interest

The authors declare that they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoan Xiang or Honggang Yu.

Additional information

Ding Qianshan and He Du contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., He, D., He, K. et al. Downregulation of TRIM21 contributes to hepatocellular carcinoma carcinogenesis and indicates poor prognosis of cancers. Tumor Biol. 36, 8761–8772 (2015). https://doi.org/10.1007/s13277-015-3572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3572-2

Keywords

Navigation