Skip to main content

Advertisement

Log in

Expression profiling of cancer-related galectins in acute myeloid leukemia

  • Research Article
  • Published:
Tumor Biology

Abstract

Acute myeloid leukemia (AML) is the most common type of leukemia in adults with the lowest survival rate of all the leukemias. It is a heterogeneous disease in which a variety of cytogenetic and molecular alterations have been identified. Some galectins were previously reported to have important roles in cancer-like neoplastic transformation, tumor cell survival, angiogenesis, and tumor metastasis. Previous studies have showed that some galectin family members play a role in various types of leukemia. The present study aims at evaluating and clarifying the diagnostic and prognostic value of the expression of cancer-related galectins in relation to the clinicopathological characters of AML patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect expression profile of eight galectin family members (galectin-1, -2, -3, -4, -8, -9, -12, and -13) in 53 newly diagnosed de novo AML patients. The samples were collected from the inpatient clinic at National Cancer Institute (NCI), Cairo University (CU), diagnosed between July 2012 and May 2013. Our results show that patients with lower LGALS12 gene expression have a lower overall survival than those with higher expression (P value <0.026). Moreover, a statistically significant association between the LGALS4 gene expression and patient age is found. Hence, the higher expression of LGALS4 gene is associated with younger age (adjusted P value <0.001). In conclusion, galectin-12 may be a potential prognostic marker for AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shipley JL, Butera JN. Acute myelogenous leukemia. Exp Hematol. 2009;37:649–58.

    Article  CAS  PubMed  Google Scholar 

  2. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341:1051–62.

    Article  CAS  PubMed  Google Scholar 

  3. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the world health organization (who) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  4. Memarian A, Nourizadeh M, Masoumi F, Tabrizi M, Emami AH, Alimoghaddam K, et al. Upregulation of cd200 is associated with foxp3+ regulatory t cell expansion and disease progression in acute myeloid leukemia. Tum Biol : J Int Soc Oncodev Biol Med. 2013;34:531–42.

    Article  CAS  Google Scholar 

  5. Damm F, Heuser M, Morgan M, Wagner K, Gorlich K, Grosshennig A, et al. Integrative prognostic risk score in acute myeloid leukemia with normal karyotype. Blood. 2011;117:4561–8.

    Article  CAS  PubMed  Google Scholar 

  6. Viguier M, Advedissian T, Delacour D, Poirier F, Deshayes F. Galectins in epithelial functions. Tis Bar. 2014;2:e29103.

    Article  Google Scholar 

  7. Cheng CL, Hou HA, Lee MC, Liu CY, Jhuang JY, Lai YJ, et al. Higher bone marrow lgals3 expression is an independent unfavorable prognostic factor for overall survival in patients with acute myeloid leukemia. Blood. 2013;121:3172–80.

    Article  CAS  PubMed  Google Scholar 

  8. Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory t cells in acute myelogenous leukemia: Is it time for immunomodulation? Blood. 2011;118:5084–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of tim-3 and pd-1 identifies a cd8+ t-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117:4501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao XY, Zhao KW, Jiang Y, Zhao M, Chen GQ. Synergistic induction of galectin-1 by ccaat/enhancer binding protein alpha and hypoxia-inducible factor 1alpha and its role in differentiation of acute myeloid leukemic cells. J Biol Chem. 2011;286:36808–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang X, Spandidos A, Wang H, Seed B. Primerbank: a pcr primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Res. 2012;40:D1144–1149.

    Article  CAS  PubMed  Google Scholar 

  12. Spandidos A, Wang X, Wang H, Seed B. Primerbank: a resource of human and mouse pcr primer pairs for gene expression detection and quantification. Nucleic Acids Res. 2010;38:D792–799.

    Article  CAS  PubMed  Google Scholar 

  13. Spandidos A, Wang X, Wang H, Dragnev S, Thurber T, Seed B. A comprehensive collection of experimentally validated primers for polymerase chain reaction quantitation of murine transcript abundance. BMC Genomics. 2008;9:633.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang X, Seed B. A pcr primer bank for quantitative gene expression analysis. Nucleic Acids Res. 2003;31:e154.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. Tm4 microarray software suite. Methods Enzymol. 2006;411:134–93.

    Article  CAS  PubMed  Google Scholar 

  16. Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel H. Cancer incidence in egypt: results of the national population-based cancer registry program. J Cancer Epidemiol. 2014;2014:437971.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Giordano M, Croci DO, Rabinovich GA. Galectins in hematological malignancies. Curr Opin Hematol. 2013;20:327–35.

    Article  CAS  PubMed  Google Scholar 

  18. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of t cells mediated by galectin-1. Nature. 1995;378:736–9.

    Article  CAS  PubMed  Google Scholar 

  19. Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC. Galectin-1 induces partial tcr zeta-chain phosphorylation and antagonizes processive tcr signal transduction. J Immunol. 2000;165:3722–9.

    Article  CAS  PubMed  Google Scholar 

  20. Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG. Cd7 delivers a pro-apoptotic signal during galectin-1-induced t cell death. J Immunol. 2000;165:2331–4.

    Article  CAS  PubMed  Google Scholar 

  21. Pace KE, Lee C, Stewart PL, Baum LG. Restricted receptor segregation into membrane microdomains occurs on human t cells during apoptosis induced by galectin-1. J Immunol. 1999;163:3801–11.

    CAS  PubMed  Google Scholar 

  22. Rabinovich GA, Alonso CR, Sotomayor CE, Durand S, Bocco JL, Riera CM. Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the ap-1 transcription factor and downregulation of bcl-2. Cell Death Differ. 2000;7:747–53.

    Article  CAS  PubMed  Google Scholar 

  23. Wells V, Davies D, Mallucci L. Cell cycle arrest and induction of apoptosis by beta galactoside binding protein (beta gbp) in human mammary cancer cells. a potential new approach to cancer control. Eur J Cancer. 1999;35:978–83.

    Article  CAS  PubMed  Google Scholar 

  24. Allione A, Wells V, Forni G, Mallucci L, Novelli F. Beta-galactoside-binding protein (beta gbp) alters the cell cycle, up-regulates expression of the alpha- and beta-chains of the ifn-gamma receptor, and triggers ifn-gamma-mediated apoptosis of activated human t lymphocytes. J Immunol. 1998;161:2114–9.

    CAS  PubMed  Google Scholar 

  25. Croci DO, Morande PE, Dergan-Dylon S, Borge M, Toscano MA, Stupirski JC, et al. Nurse-like cells control the activity of chronic lymphocytic leukemia b cells via galectin-1. Leukemia. 2013;27:1413–6.

    Article  CAS  PubMed  Google Scholar 

  26. Junking M, Wongkham C, Sripa B, Sawanyawisuth K, Araki N, Wongkham S. Decreased expression of galectin-3 is associated with metastatic potential of liver fluke-associated cholangiocarcinoma. Eur J Cancer. 2008;44:619–26.

    Article  CAS  PubMed  Google Scholar 

  27. Tsuboi K, Shimura T, Masuda N, Ide M, Tsutsumi S, Yamaguchi S, et al. Galectin-3 expression in colorectal cancer: relation to invasion and metastasis. Anticancer Res. 2007;27:2289–96.

    CAS  PubMed  Google Scholar 

  28. Lee JW, Song SY, Choi JJ, Choi CH, Kim TJ, Kim J, et al. Decreased galectin-3 expression during the progression of cervical neoplasia. J Cancer Res Clin Oncol. 2006;132:241–7.

    Article  CAS  PubMed  Google Scholar 

  29. Turkoz HK, Oksuz H, Yurdakul Z, Ozcan D. Galectin-3 expression in tumor progression and metastasis of papillary thyroid carcinoma. Endocr Pathol. 2008;19:92–6.

    Article  PubMed  Google Scholar 

  30. Krzeslak A, Lipinska A. Galectin-3 as a multifunctional protein. Cell Molec Biol Lett. 2004;9:305–28.

    CAS  Google Scholar 

  31. Kawachi K, Matsushita Y, Yonezawa S, Nakano S, Shirao K, Natsugoe S, et al. Galectin-3 expression in various thyroid neoplasms and its possible role in metastasis formation. Hum Pathol. 2000;31:428–33.

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura M, Inufusa H, Adachi T, Aga M, Kurimoto M, Nakatani Y, et al. Involvement of galectin-3 expression in colorectal cancer progression and metastasis. Int J Oncol. 1999;15:143–8.

    CAS  PubMed  Google Scholar 

  33. Lotan R, Ito H, Yasui W, Yokozaki H, Lotan D, Tahara E. Expression of a 31-kda lactoside-binding lectin in normal human gastric mucosa and in primary and metastatic gastric carcinomas. Int J Cancer J Int du Cancer. 1994;56:474–80.

    Article  CAS  Google Scholar 

  34. Yamamoto-Sugitani M, Kuroda J, Ashihara E, Nagoshi H, Kobayashi T, Matsumoto Y, et al. Galectin-3 (gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia. Proc Natl Acad Sci U S A. 2011;108:17468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hadari YR, Arbel-Goren R, Levy Y, Amsterdam A, Alon R, Zakut R, et al. Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J Cell Sci. 2000;113(Pt 13):2385–97.

    CAS  PubMed  Google Scholar 

  36. Nagy N, Bronckart Y, Camby I, Legendre H, Lahm H, Kaltner H, et al. Galectin-8 expression decreases in cancer compared with normal and dysplastic human colon tissue and acts significantly on human colon cancer cell migration as a suppressor. Gut. 2002;50:392–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bidon-Wagner N, Le Pennec JP. Human galectin-8 isoforms and cancer. Glycoconj J. 2004;19:557–63.

    Article  PubMed  Google Scholar 

  38. Su ZZ, Lin J, Shen R, Fisher PE, Goldstein NI, Fisher PB. Surface-epitope masking and expression cloning identifies the human prostate carcinoma tumor antigen gene pcta-1 a member of the galectin gene family. Proc Natl Acad Sci U S A. 1996;93:7252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rechreche H, Mallo GV, Montalto G, Dagorn JC, Iovanna JL. Cloning and expression of the mrna of human galectin-4, an s-type lectin down-regulated in colorectal cancer. Europ J Biochem / FEBS. 1997;248:225–30.

    Article  CAS  Google Scholar 

  40. Kondoh N, Wakatsuki T, Ryo A, Hada A, Aihara T, Horiuchi S, et al. Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Res. 1999;59:4990–6.

    CAS  PubMed  Google Scholar 

  41. Hippo Y, Yashiro M, Ishii M, Taniguchi H, Tsutsumi S, Hirakawa K, et al. Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res. 2001;61:889–95.

    CAS  PubMed  Google Scholar 

  42. Yang RY, Hsu DK, Yu L, Ni J, Liu FT. Cell cycle regulation by galectin-12, a new member of the galectin superfamily. J Biol Chem. 2001;276:20252–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reham Helwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Leithy, A.A., Helwa, R., Assem, M.M. et al. Expression profiling of cancer-related galectins in acute myeloid leukemia. Tumor Biol. 36, 7929–7939 (2015). https://doi.org/10.1007/s13277-015-3513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3513-0

Keywords

Navigation