Skip to main content

Advertisement

Log in

Novel mutations in the RB1 gene from Chinese families with a history of retinoblastoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Retinoblastoma is an aggressive eye cancer that develops during infancy and is divided into two clinical types, sporadic and heritable. RB1 has been identified as the only pathological gene responsible for heritable retinoblastoma. Here, we identified 11 RB1 germline mutations in the Han pedigrees of 17 bilateral retinoblastoma patients from China. Four mutations were nonsense mutations, five were splice site mutations, and two resulted in a frame shift due to an insertion or a deletion. Three of the mutations had not been previously reported, and the p.Q344L mutation occurred in two generations of retinoblastoma patients. We investigated phenotypic–genotypic relationships for the novel mutations and showed that these mutations affected the expression, location, and function of the retinoblastoma protein. Abnormal protein localization was observed after transfection of the mutant genes. In addition, changes in the cell cycle distribution and apoptosis rates were observed when the Saos-2 cell line was transfected with plasmids encoding the mutant RB1 genes. Our findings expand the spectrum of known RB1 mutations and will benefit the investigation of RB1 mutation hotspots. Genetic counseling can be offered to families with heritable RB1 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eng C, Li FP, Abramson DH, Ellsworth RM, Wong FL, Goldman MB, et al. Mortality from second tumors among long-term survivors of retinoblastoma. J Natl Cancer Inst. 1993;85(14):1121–8.

    Article  CAS  PubMed  Google Scholar 

  2. Zucker JM, Desjardins L, Doz F. Retinoblastoma. Eur J Cancer. 1998;34(7):1045–8. discussion 8–9. doi:S0959-8049(98)00181-6.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao J, Li S, Shi J, Wang N. Clinical presentation and group classification of newly diagnosed intraocular retinoblastoma in China. Br J Ophthalmol. 2011;95(10):1372–5. doi:10.1136/bjo.2010.191130.

    Article  PubMed  Google Scholar 

  4. Dimaras H, Kimani K, Dimba EA, Gronsdahl P, White A, Chan HS, et al. Retinoblastoma. Lancet. 2012;379(9824):1436–46. doi:10.1016/S0140-6736(11)61137-9.

    Article  PubMed  Google Scholar 

  5. Dryja TP, Rapaport JM, Joyce JM, Petersen RA. Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci U S A. 1986;83(19):7391–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao J, Dimaras H, Massey C, Xu X, Huang D, Li B, et al. Pre-enucleation chemotherapy for eyes severely affected by retinoblastoma masks risk of tumor extension and increases death from metastasis. J Clin Oncol. 2011;29(7):845–51. doi:10.1200/JCO.2010.32.5332.

    Article  PubMed  Google Scholar 

  7. Toguchida J, McGee TL, Paterson JC, Eagle JR, Tucker S, Yandell DW, et al. Complete genomic sequence of the human retinoblastoma susceptibility gene. Genomics. 1993;17(3):535–43. doi:S0888-7543(83)71368-6.

    Article  CAS  PubMed  Google Scholar 

  8. Valverde JR. RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database. 2005

  9. Balmer A, Zografos L, Munier F. Diagnosis and current management of retinoblastoma. Oncogene. 2006;25(38):5341–9. doi:1209622.

    Article  CAS  PubMed  Google Scholar 

  10. Fan JY, Han B, Qiao J, Liu BL, Ji YR, Ge SF, et al. Functional study on a novel missense mutation of the transcription factor FOXL2 causes blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). Mutagenesis. 2011;26(2):283–9. doi:10.1093/mutage/geq086.

    Article  CAS  PubMed  Google Scholar 

  11. Houdayer C, Dehainault C, Mattler C, Michaux D, Caux-Moncoutier V, Pages-Berhouet S, et al. Evaluation of in silico splice tools for decision-making in molecular diagnosis. Hum Mutat. 2008;29(7):975–82. doi:10.1002/humu.20765.

    Article  CAS  PubMed  Google Scholar 

  12. Bertolini S, Cassanelli S, Garuti R, Ghisellini M, Simone ML, Rolleri M, et al. Analysis of LDL receptor gene mutations in Italian patients with homozygous familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1999;19(2):408–18.

    Article  CAS  PubMed  Google Scholar 

  13. Cowell JK, Smith T, Bia B. Frequent constitutional C to T mutations in CGA-arginine codons in the RB1 gene produce premature stop codons in patients with bilateral (hereditary) retinoblastoma. Eur J Hum Genet. 1994;2(4):281–90.

    CAS  PubMed  Google Scholar 

  14. Van Orsouw NJ, Li D, van der Vlies P, Scheffer H, Eng C, Buys CH, et al. Mutational scanning of large genes by extensive PCR multiplexing and two-dimensional electrophoresis: application to the RB1 gene. Hum Mol Genet. 1996;5(6):755–61. doi:5w0369.

    Article  PubMed  Google Scholar 

  15. Blanquet V, Turleau C, Gross-Morand MS, Senamaud-Beaufort C, Doz F, Besmond C. Spectrum of germline mutations in the RB1 gene: a study of 232 patients with hereditary and non hereditary retinoblastoma. Hum Mol Genet. 1995;4(3):383–8.

    Article  CAS  PubMed  Google Scholar 

  16. Xiao B, Spencer J, Clements A, Ali-Khan N, Mittnacht S, Broceno C, et al. Crystal structure of the retinoblastoma tumor suppressor protein bound to E2F and the molecular basis of its regulation. Proc Natl Acad Sci U S A. 2003;100(5):2363–8. doi:10.1073/pnas.0436813100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998;12(15):2245–62.

    Article  CAS  PubMed  Google Scholar 

  18. Qin XQ, Chittenden T, Livingston DM, Kaelin Jr WG. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 1992;6(6):953–64.

    Article  CAS  PubMed  Google Scholar 

  19. Templeton DJ, Park SH, Lanier L, Weinberg RA. Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc Natl Acad Sci U S A. 1991;88(8):3033–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu Y, Alwine JC. Interaction between simian virus 40 large T antigen and insulin receptor substrate 1 is disrupted by the K1 mutation, resulting in the loss of large T antigen-mediated phosphorylation of Akt. J Virol. 2008;82(9):4521–6. doi:JVI.02365-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Talluri S, Isaac CE, Ahmad M, Henley SA, Francis SM, Martens AL, et al. A G1 checkpoint mediated by the retinoblastoma protein that is dispensable in terminal differentiation but essential for senescence. Mol Cell Biol. 2010;30(4):948–60. doi:10.1128/MCB. 01168-09.

    Article  CAS  PubMed  Google Scholar 

  22. Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 2008;8(9):671–82. doi:10.1038/nrc2399.

    Article  CAS  PubMed  Google Scholar 

  23. Isaac CE, Francis SM, Martens AL, Julian LM, Seifried LA, Erdmann N, et al. The retinoblastoma protein regulates pericentric heterochromatin. Mol Cell Biol. 2006;26(9):3659–71. doi:10.1128/MCB. 26.9.3659-3671.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marchong MN, Yurkowski C, Ma C, Spencer C, Pajovic S, Gallie BL. Cdh11 acts as a tumor suppressor in a murine retinoblastoma model by facilitating tumor cell death. PLoS Genet. 2010;6(4):e1000923. doi:10.1371/journal.pgen.1000923.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ali MPV, Honavar S, et al. RB1 gene mutations in retinoblastoma and its clinical correlation. Saudi J Ophthalmol. 2010;2010(24):119–23.

    Article  Google Scholar 

  26. Manning AL, Longworth MS, Dyson NJ. Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev. 2010;24(13):1364–76. doi:10.1101/gad.1917310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012;481(7381):329–34. doi:10.1038/nature10733.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang H, Jiao W, Sun L, Fan J, Chen M, Wang H, et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell. 2013;13(1):30–5. doi:S1934-5909(13)00205-1.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Niu B, Hu JF, Ge S, Wang H, Li T, et al. Interruption of intrachromosomal looping by CCCTC binding factor decoy proteins abrogates genomic imprinting of human insulin-like growth factor II. J Cell Biol. 2011;193(3):475–87. doi:10.1083/jcb.201101021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu K, Rosenwaks Z, Beaverson K, Cholst I, Veeck L, Abramson DH. Preimplantation genetic diagnosis for retinoblastoma: the first reported liveborn. Am J Ophthalmol. 2004;137(1):18–23. doi:S0002939403008729.

    Article  PubMed  Google Scholar 

  31. Dommering CJ, Moll AC, Imhof SM, de Die-Smulders CE, Coonen E. Another liveborn after preimplantation genetic diagnosis for retinoblastoma. Am J Ophthalmol. 2004;138(6):1088–9. doi:S0002-9394(04)00936-5.

    Article  PubMed  Google Scholar 

  32. Sutterlin M, Sleiman PA, Onadim Z, Delhanty J. Single cell detection of inherited retinoblastoma predisposition. Prenat Diagn. 1999;19(13):1231–6. doi:10.1002/(SICI)1097-0223(199912).

    Article  CAS  PubMed  Google Scholar 

  33. Rechitsky S, Verlinsky O, Chistokhina A, Sharapova T, Ozen S, Masciangelo C, et al. Preimplantation genetic diagnosis for cancer predisposition. Reprod Biomed Online. 2002;5(2):148–55.

    Article  PubMed  Google Scholar 

  34. Girardet A, Hamamah S, Anahory T, Dechaud H, Sarda P, Hedon B, et al. First preimplantation genetic diagnosis of hereditary retinoblastoma using informative microsatellite markers. Mol Hum Reprod. 2003;9(2):111–6.

    Article  CAS  PubMed  Google Scholar 

  35. Abou-Sleiman PM, Apessos A, Harper JC, Serhal P, Winston RM, Delhanty JD. First application of preimplantation genetic diagnosis to neurofibromatosis type 2 (NF2). Prenat Diagn. 2002;22(6):519–24. doi:10.1002/pd.393.

    Article  CAS  PubMed  Google Scholar 

  36. Spits C, De Rycke M, Van Ranst N, Joris H, Verpoest W, Lissens W, et al. Preimplantation genetic diagnosis for neurofibromatosis type 1. Mol Hum Reprod. 2005;11(5):381–7. doi:10.1093/molehr/gah170.

    Article  CAS  PubMed  Google Scholar 

  37. Ao A, Wells D, Handyside AH, Winston RM, Delhanty JD. Preimplantation genetic diagnosis of inherited cancer: familial adenomatous polyposis coli. J Assist Reprod Genet. 1998;15(3):140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rushlow D, Piovesan B, Zhang K, Prigoda-Lee NL, Marchong MN, Clark RD, et al. Detection of mosaic RB1 mutations in families with retinoblastoma. Hum Mutat. 2009;30(5):842–51. doi:10.1002/humu.20940.

    Article  CAS  PubMed  Google Scholar 

  39. Robson ME, Storm CD, Weitzel J, Wollins DS, Offit K. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2010;28(5):893–901. doi:10.1200/JCO.2009.27.0660.

    Article  PubMed  Google Scholar 

  40. National Retinoblastoma Strategy Canadian Guidelines for Care: Strategie therapeutique du retinoblastome guide clinique canadien. Can J Ophthalmol. 2009;44 Suppl 2:S1-88. doi:10.3129/i09-194

  41. Richter S, Vandezande K, Chen N, Zhang K, Sutherland J, Anderson J, et al. Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma. Am J Hum Genet. 2003;72(2):253–69. doi:S0002-9297(07)60537-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Program of National Health and Family Planning Commission of China (2014040), the National Natural Science Foundation of China grant (81172323, 81372909), and the Science and Technology Commission of Shanghai (12ZR1417300, 13ZR1423600). We are very grateful to Professor Shanchao Zhao (Southern Medical University, Key Laboratory for Proteomics of Guangdong Province) for providing the wild-type RB1 recombinant plasmid and Professor Yongqiang Hao (Department of Orthopedics, Shanghai Ninth People’s Hospital) for providing the Saos-2 cell line. We wish to acknowledge Wei Liu (Shanghai Institute of Endocrinology, Ruijing Hospital, Shanghai Jiao Tong University School of Medicine) for excellent technical assistance. We are most grateful to the family and the volunteers who participated in this study and to the clinicians and researchers who made this work possible.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengfang Ge or Xianqun Fan.

Additional information

Leilei Zhang, Renbing Jia, and Junyang Zhao contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jia, R., Zhao, J. et al. Novel mutations in the RB1 gene from Chinese families with a history of retinoblastoma. Tumor Biol. 36, 2409–2420 (2015). https://doi.org/10.1007/s13277-014-2851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2851-7

Keywords

Navigation