Skip to main content
Log in

WIP1 regulates the proliferation and invasion of nasopharyngeal carcinoma in vitro

  • Research Article
  • Published:
Tumor Biology

Abstract

Wild-type p53-induced phosphatase (WIP1) is overexpressed and functionally altered in multiple human malignancies. The present study investigated its abnormal expression and dysfunctions in nasopharyngeal carcinoma (NPC) in vitro. Here, analysis of WIP1 mRNA and protein in human NPC tissues revealed that both WIP1 messenger RNA (mRNA) and protein were elevated and were correlated with NPC clinical stage and metastasis in patients. In vitro experiments further showed that WIP1 inhibition led to a decrease in the proliferative ability of NPC CNE-2 and 5-8F cells accompanied by cell cycle arrest and increased apoptosis. In addition, WIP1 knockdown inhibited the invasiveness of CNE-2 and 5-8F cells and was associated with the down-regulation of the expression of matrix metallopeptidase 9 (MMP-9) mRNA and protein. Taken together, our data demonstrate that WIP1 regulates the proliferation and invasiveness of NPC cells in vitro, and this may be correlated with its modulation of MMP-9 expression, cell cycle progression and apoptosis. WIP1 functioned as a potential therapeutic target in NPC management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci U S A. 1997;94(12):6048–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lowe JM, Cha H, Yang Q, Fornace Jr AJ. Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase. J Biol Chem. 2010;285(8):5249–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chew J, Biswas S, Shreeram S, Humaidi M, Wong ET, Dhillion MK, et al. WIP1 phosphatase is a negative regulator of NF-kappaB signalling. Nat Cell Biol. 2009;11(5):659–66.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu YH, Bulavin DV. Wip1-dependent signaling pathways in health and diseases. Prog Mol Biol Transl Sci. 2012;106:307–25.

    Article  CAS  PubMed  Google Scholar 

  5. Fuku T, Semba S, Yutori H, Yokozaki H. Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma. Pathol Int. 2007;57(9):566–71.

    Article  CAS  PubMed  Google Scholar 

  6. Yu E, Ahn YS, Jang SJ, Kim MJ, Yoon HS, Gong G, et al. Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers. Breast Cancer Res Treat. 2007;101(3):269–78.

    Article  CAS  PubMed  Google Scholar 

  7. Li ZT, Zhang L, Gao XZ, Jiang XH, Sun LQ. Expression and significance of the Wip1 proto-oncogene in colorectal cancer. Asian Pac J Cancer Prev. 2013;14(3):1975–9.

    Article  PubMed  Google Scholar 

  8. Liang C, Guo E, Lu S, Wang S, Kang C, Chang L, et al. Over-expression of wild-type p53-induced phosphatase 1 confers poor prognosis of patients with gliomas. Brain Res. 2012;1444:65–75.

    Article  CAS  PubMed  Google Scholar 

  9. Tan DS, Lambros MB, Rayter S, Natrajan R, Vatcheva R, Gao Q, et al. PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res. 2009;15(7):2269–80.

    Article  CAS  PubMed  Google Scholar 

  10. Satoh N, Maniwa Y, Bermudez VP, Nishimura K, Nishio W, Yoshimura M, et al. Oncogenic phosphatase Wip1 is a novel prognostic marker for lung adenocarcinoma patient survival. Cancer Sci. 2011;102(5):1101–6.

    Article  CAS  PubMed  Google Scholar 

  11. Goloudina AR, Tanoue K, Hammann A, Fourmaux E, Le Guezennec X, Bulavin DV, et al. Wip1 promotes RUNX2-dependent apoptosis in p53-negative tumors and protects normal tissues during treatment with anticancer agents. Proc Natl Acad Sci U S A. 2012;109(2):E68–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li GB, Zhang XL, Yuan L, Jiao QQ, Liu DJ, Liu J. Protein phosphatase magnesium-dependent 1delta (PPM1D) mRNA expression is a prognosis marker for hepatocellular carcinoma. PLoS One. 2013;8(3):e60775.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lowe J, Cha H, Lee MO, Mazur SJ, Appella E, Fornace Jr AJ. Regulation of the Wip1 phosphatase and its effects on the stress response. Front Biosci (Landmark Ed). 2012;17:1480–98.

    Article  CAS  PubMed Central  Google Scholar 

  14. Lu X, Nannenga B, Donehower LA. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev. 2005;19(10):1162–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hershko T, Korotayev K, Polager S, Ginsberg D. E2F1 modulates p38 MAPK phosphorylation via transcriptional regulation of ASK1 and Wip1. J Biol Chem. 2006;281(42):31309–16.

    Article  CAS  PubMed  Google Scholar 

  16. Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet. 2004;36(4):343–50.

    Article  CAS  PubMed  Google Scholar 

  17. Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C, et al. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell. 2006;23(5):757–64.

    Article  CAS  PubMed  Google Scholar 

  18. Belova GI, Demidov ON, Fornace Jr AJ, Bulavin DV. Chemical inhibition of Wip1 phosphatase contributes to suppression of tumorigenesis. Cancer Biol Ther. 2005;4(10):1154–8.

    Article  CAS  PubMed  Google Scholar 

  19. Rayter S, Elliott R, Travers J, Rowlands MG, Richardson TB, Boxall K, et al. A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D. Oncogene. 2008;27(8):1036–44.

    Article  CAS  PubMed  Google Scholar 

  20. Xiao O, Xie ZL, Lin BW, Yin XF, Pi RB, Zhou SY. Minocycline inhibits alkali burn-induced corneal neovascularization in mice. PLoS One. 2012;7(7):e41858.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Liu Y, Xie C, Zhang X, Huang D, Zhou X, Tan P, et al. Elevated expression of HMGB1 in squamous-cell carcinoma of the head and neck and its clinical significance. Eur J Cancer. 2010;46(16):3007–15.

    Article  CAS  PubMed  Google Scholar 

  22. Tan P, Liu Y, Yu C, Su Z, Li G, Zhou X, et al. EphA2 silencing in nasopharyngeal carcinoma leads to decreased proliferation, invasion and increased sensitization to paclitaxel. Oncol Lett. 2012;4(3):429–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Liu Y, Yu C, Qiu Y, Huang D, Zhou X, Zhang X, et al. Downregulation of EphA2 expression suppresses the growth and metastasis in squamous-cell carcinoma of the head and neck in vitro and in vivo. J Cancer Res Clin Oncol. 2012;138(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  24. Sham JS, Choy D. Prognostic factors of nasopharyngeal carcinoma: a review of 759 patients. Br J Radiol. 1990;63(745):51–8.

    Article  CAS  PubMed  Google Scholar 

  25. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1):9–34.

    Article  CAS  PubMed  Google Scholar 

  26. Fu Z, Sun G, Gu T. Proto-oncogene Wip1, a member of a new family of proliferative genes in NSCLC and its clinical significance. Tumour Biol. 2014;35(4):2975–81.

  27. Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KC, et al. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet. 2002;31(2):133–4.

    Article  CAS  PubMed  Google Scholar 

  28. Castellino RC, De Bortoli M, Lu X, Moon SH, Nguyen TA, Shepard MA, et al. Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J Neuro-oncol. 2008;86(3):245–56.

    Article  CAS  Google Scholar 

  29. Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T, et al. PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res. 2003;63(8):1876–83.

    CAS  PubMed  Google Scholar 

  30. Hirasawa A, Saito-Ohara F, Inoue J, Aoki D, Susumu N, Yokoyama T, et al. Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res. 2003;9(6):1995–2004.

    CAS  PubMed  Google Scholar 

  31. Buss MC, Read TA, Schniederjan MJ, Gandhi K, Castellino RC. HDM2 promotes WIP1-mediated medulloblastoma growth. Neuro Oncol. 2012;14(4):440–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Goloudina AR, Mazur SJ, Appella E, Garrido C, Demidov ON. Wip1 sensitizes p53-negative tumors to apoptosis by regulating the Bax/Bcl-xL ratio. Cell Cycle. 2012;11(10):1883–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Moon SH, Nguyen TA, Darlington Y, Lu X, Donehower LA. Dephosphorylation of γ-H2AX by WIP1: an important homeostatic regulatory event in DNA repair and cell cycle control. Cell Cycle. 2010;9(11):2092–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Vaz B, Ramadan K. Wip1 downregulation conserves truncated DNA damage response (DDR) in mitosis. Cell Cycle. 2013;12(3):391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Song JY, Ryu SH, Cho YM, Kim YS, Lee BM, Lee SW, et al. Wip1 suppresses apoptotic cell death through direct dephosphorylation of BAX in response to γ-radiation. Cell Death Dis. 2013;4:e744.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG. Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol. 2012;181(6):1895–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP, et al. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol. 2011;179(3):1455–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Liu Z, Li L, Yang Z, Luo W, Li X, Yang H, et al. Increased expression of MMP9 is correlated with poor prognosis of nasopharyngeal carcinoma. BMC Cancer. 2010;10:270.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81170912).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sun, H., He, G. et al. WIP1 regulates the proliferation and invasion of nasopharyngeal carcinoma in vitro. Tumor Biol. 35, 7651–7657 (2014). https://doi.org/10.1007/s13277-014-2034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2034-6

Keywords

Navigation