Skip to main content
Log in

CircKLHL2 mitigates septic lung injury via circKLHL2-miR-338-3p-ATF6 ceRNA pathway

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (circRNAs) are newly identified therapeutic targets for sepsis. CircRNA mmu_circ_0001679 dysregulation is underlying the pathogenesis and treatment of sepsis-induced acute lung injury (ALI). Here, the expression and role of its human homologoue circRNA-Kelch-like family member 2 (circKLHL2; hsa_circ_0071374) were explored in lipopolysaccharide (LPS)-induced human ALI.

Objective

Expression levels of circKLHL2, microRNA (miR)-338-3p and activating transcription factor 6 (ATF6) were detected by quantitative PCR and western blotting, and dual-luciferase reporter assay confirmed target relationships among them. Cell injury was measured using cell-counting kit-8, reactive oxygen species (ROS)/malondialdehyde (MDA)/superoxide dismutase (SOD) assays, Annexin V-fluorescein isothiocyanate apoptosis assay, western blotting and cysteine-requiring aspartate proteases (caspases) activity assays.

Result

The expression of circKLHL2 and ATF6 was upregulated in sepsis-damaged human lung tissues and LPS-stressed human bronchial epithelial cells (16HBE), with a concomitant decrease of miR-338-3p. RNA interfering of circKLHL2 improved cell viability of LPS-challenged 16HBE cells, and suppressed apoptosis, oxidative stress and endoplasmic reticulum (ER) stress, as evidenced by the increased bcl-2 level and SOD activity, and the decreased apoptosis rate, caspase3/9 activity and levels of bcl-2-associated X protein, ROS, MDA, ATF6 and C/EBP-homologous protein. Moreover, circKLHL2 knockdown exerted similar results to ER stress inhibitor 4-phenyl butyric acid in LPS injury. In addition, circKLHL2 knockdown reversed LPS-induced mitochondrial dysfunction. ATF6 and circKLHL2 were competing endogenous RNAs of miR-338-3p, and either exhausting miR-338-3p or restoring ATF6 could counteract circKLHL2 knockdown-mediated roles in LPS injuries.

Conclusion

Depleting circKLHL2 suppressed LPS-induced ALI through suppressing mitochondrial dysfunction and cytotoxicity and oxidative and ER stresses-induced apoptosis via circKLHL2-miR-338-3p/ATF6 axis.

Highlights

  1. 1.

    CircKLHL2 was upregulated in sepsis-damaged lung tissues and LPS-induced bronchial epithelial cells.

  2. 2.

    Interfering circKLHL2 attenuated LPS-elicited cytotoxicity, apoptosis, and oxidative and ER stresses, and mitochondrial dysfunction.

  3. 3.

    ATF6 upregulation and miR-338-3p downregulation counteracted the role of circKLHL2 depletion.

  4. 4.

    CircKLHL2 and ATF6 were ceRNAs for miR-338-3p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bao X, Zhang Q, Liu N, Zhuang S, Li Z, Meng Q, Sun H, Bai J, Zhou X, Tang L (2019) Characteristics of circular RNA expression of pulmonary macrophages in mice with sepsis-induced acute lung injury. J Cell Mol Med 23(10):7111–7115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet (london, England) 360(9328):219–223

    Article  CAS  PubMed  Google Scholar 

  • Brooks D, Barr LC, Wiscombe S, McAuley DF, Simpson AJ, Rostron AJ (2020) Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. Europ Res J 56(1):1901298

    Article  CAS  Google Scholar 

  • Carré JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, Suliman HB, Piantadosi CA, Mayhew TM, Breen P et al (2010) Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med 182(6):745–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo M, Mori M, Akira S, Gotoh T (2006) C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. J Immunol 176(10):6245–6253

    Article  CAS  PubMed  Google Scholar 

  • Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the berlin definition. JAMA 307(23):2526–2533

    Google Scholar 

  • Gewandter JS, Staversky RJ, O’Reilly MA (2009) Hyperoxia augments ER-stress-induced cell death independent of BiP loss. Free Radical Biol Med 47(12):1742–1752

    Article  CAS  Google Scholar 

  • Guo W, Wang Z, Wang S, Liao X, Qin T (2021) Transcriptome sequencing reveals differential expression of circRNAs in sepsis induced acute respiratory distress syndrome. Life Sci 278:119566

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Chan H, Wong SH, Wang MH, Yu J, Xiao Z, Liu X, Choi G, Leung CC, Wong WT et al (2016) The involvement of regulatory non-coding RNAs in sepsis: a systematic review. Crit Care 20(1):383

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang CY, Deng JS, Huang WC, Jiang WP, Huang GJ (2020) Attenuation of lipopolysaccharide-induced acute lung injury by Hispolon in Mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated er stress-induced apoptosis and autophagy. Nutrients 12(6):1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SR, Kim HJ, Kim DI, Lee KB, Park HJ, Jeong JS, Cho SH, Lee YC (2015) Blockade of interplay between IL-17A and endoplasmic reticulum stress attenuates LPS-Induced Lung Injury. Theranostics 5(12):1343–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dong C, Wang G, Zheng H, Wang X, Bai C (2011) Pulmonary epithelial CCR3 promotes LPS-induced lung inflammation by mediating release of IL-8. J Cell Physiol 226(9):2398–2405

    Article  CAS  PubMed  Google Scholar 

  • Li S, Guo L, Qian P, Zhao Y, Liu A, Ji F, Chen L, Wu X, Qian G (2015) Lipopolysaccharide Induces Autophagic cell death through the PERK-dependent branch of the unfolded protein response in human alveolar epithelial A549 cells. Cell Physiol Biochem Int J Exp Cell Physio Biochem Pharmacol 36(6):2403–2417

    Article  CAS  Google Scholar 

  • Li Y, Chen P, Zu L, Liu B, Wang M, Zhou Q (2016) MicroRNA-338-3p suppresses metastasis of lung cancer cells by targeting the EMT regulator Sox4. Am J Cancer Res 6(2):127–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Barravecchia M, Kothari P, Young JL, Dean DA (2016) beta1-Na(+), K(+)-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury. Gene Ther 23(6):489–499

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Wan Q, Li J, Hu X, Gu X, Xu S (2020) Circ_0038467 regulates lipopolysaccharide-induced inflammatory injury in human bronchial epithelial cells through sponging miR-338-3p. Thoracic Cancer 11(5):1297–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295(3):L379-399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakada EM, Sun R, Fujii U, Martin JG (2021) The impact of endoplasmic reticulum-associated protein modifications, folding and degradation on lung structure and function. Front Physiol 12:665622

    Article  PubMed  PubMed Central  Google Scholar 

  • Namba T, Ishihara T, Tanaka K, Hoshino T, Mizushima T (2007) Transcriptional activation of ATF6 by endoplasmic reticulum stressors. Biochem Biophys Res Commun 355(2):543–548

    Article  CAS  PubMed  Google Scholar 

  • Perrin-Cocon L, Aublin-Gex A, Sestito SE, Shirey KA, Patel MC, Andre P, Blanco JC, Vogel SN, Peri F, Lotteau V (2017) TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Sci Rep 7:40791

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rial MJ, Canas JA, Rodrigo-Munoz JM, Valverde-Monge M, Sastre B, Sastre J, Del Pozo V (2021) Changes in serum MicroRNAs after anti-IL-5 biological treatment of severe asthma. Int J Molecular Sci 22(7):3558

    Article  CAS  Google Scholar 

  • Shah D, Romero F, Guo Z, Sun J, Li J, Kallen CB, Naik UP, Summer R (2017) Obesity-induced endoplasmic reticulum stress causes lung endothelial dysfunction and promotes acute lung injury. Am J Respir Cell Mol Biol 57(2):204–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Xin Q, Chai R, Liu L, Ma Z (2015) Ectopic expressed miR-203 contributes to chronic obstructive pulmonary disease via targeting TAK1 and PIK3CA. Int J Clin Exp Pathol 8(9):10662–10670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Dong N, Ji D, Huang X, Ying Z, Wang X, Chen C (2018) Lipopolysaccharide-induced CCN1 production enhances interleukin-6 secretion in bronchial epithelial cells. Cell Biol Toxicol 34(1):39–49

    Article  PubMed  Google Scholar 

  • Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn EJ (2018) MicroRNA 200c–3p regulates autophagy via upregulation of endoplasmic reticulum stress in PC-3 cells. Cancer Cell Int 18:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Takashima K, Matsushima M, Hashimoto K, Nose H, Sato M, Hashimoto N, Hasegawa Y, Kawabe T (2014) Protective effects of intratracheally administered quercetin on lipopolysaccharide-induced acute lung injury. Respir Res 15:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Tauseef M, Knezevic N, Chava KR, Smith M, Sukriti S, Gianaris N, Obukhov AG, Vogel SM, Schraufnagel DE, Dietrich A et al (2012) TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. J Exp Med 209(11):1953–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Adler KB, Erjefalt J, Bai C (2007) Airway epithelial dysfunction in the development of acute lung injury and acute respiratory distress syndrome. Expert Rev Respir Med 1(1):149–155

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yang C, Liu X, Zheng J, Xue Y, Ruan X, Shen S, Wang D, Li Z, Cai H et al (2020) An upstream open reading frame regulates vasculogenic mimicry of glioma via ZNRD1-AS1/miR-499a-5p/ELF1/EMI1 pathway. J Cell Mol Med 24(11):6120–6136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Yang N, Wen R, Liu CF, Zhang TN (2021) Long noncoding RNA: regulatory mechanisms and therapeutic potential in sepsis. Front Cell Infect Microbiol 11:563126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Yang Y, Guo S, Yang J, Jiang K, Zhao G, Qiu C, Deng G (2017) Nuciferine ameliorates inflammatory responses by inhibiting the TLR4-mediated pathway in lipopolysaccharide-induced acute lung injury. Front Pharmacol 8:939

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie MY, Hou LJ, Sun JJ, Zeng B, Xi QY, Luo JY, Chen T, Zhang YL (2019) Porcine milk exosome MiRNAs attenuate LPS-induced apoptosis through inhibiting TLR4/NF-kappaB and p53 pathways in intestinal epithelial cells. J Agric Food Chem 67(34):9477–9491

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Song Z, Hong D, (2020) CRBN knockdown mitigates lipopolysaccharide-induced acute lung injury by suppression of oxidative stress and endoplasmic reticulum (ER) stress associated NF-kappaB signaling. Biomedicine pharmacotherapy = Biomed pharmacotherapie, 123:109761.

  • Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20(18):6755–6767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan C, Gu J, Wu J, Yin J, Zhang M, Miao H, Li J (2020a) Circular RNA expression in the lungs of a mouse model of sepsis induced by cecal ligation and puncture. Heliyon 6(7):e04532

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Q, Xu T, Chen Y, Qu W, Sun D, Liu X, Sun L (2020b) MiR-185–5p ameliorates endoplasmic reticulum stress and renal fibrosis by downregulation of ATF6. Lab Investigation J Tech Method Pathol 100(11):1436–1446

    Article  CAS  Google Scholar 

  • Zhang TN, Li D, Xia J, Wu QJ, Wen R, Yang N, Liu CF (2017a) Non-coding RNA: a potential biomarker and therapeutic target for sepsis. Oncotarget 8(53):91765–91778

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Zheng H, Zhang G, Cheng R, Lu C, Guo Y, Zhao G (2017b) MicroRNA-338-3p suppresses cell proliferation and induces apoptosis of non-small-cell lung cancer by targeting sphingosine kinase 2. Cancer Cell Int 17:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wu S, Muhammad S, Ren Q, Sun C (2018) miR-103/107 promote ER stress-mediated apoptosis via targeting the Wnt3a/beta-catenin/ATF6 pathway in preadipocytes. J Lipid Res 59(5):843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Z, Wang Q, Zhou M, Li W, Zheng Y, Li F, Zheng S, He Z (2020) Protective effects of P2X7R antagonist in sepsis-induced acute lung injury in mice via regulation of circ_0001679 and circ_0001212 and downstream Pln, Cdh2, and Nprl3 expression. J Gene Med 22(12):e3261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors have been involved in the management of the patient and in the conception of the manuscript. ZCM and ZZY have been involved in the drafting of the manuscript or its critical revision for important intellectual content. WRR and ZZY have been involved in data collection. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zhongyan Zhao.

Ethics declarations

Conflict of interest

Author Chunmei Zhang declares that he/she has no conflict of interest, author Ruoran Wu declares that he/she has no conflict of interest, and the author Zhongyan Zhao declares that he/she has no conflict of interest.

Ethical approval

This study protocol was reviewed and approved by China-Japan Union Hospital of Jilin University and written informed consents were obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13273_2023_349_MOESM1_ESM.tif

Supplementary file1 Role of ER stress inhibitor in LPS-stimulated 16HBE cells. (A-H) 10 μg/mL of LPS-administrated 16HBE cells were pre-treated with 5 mM 4-PBA for 2 h. (A) CCK8 assay measured the percentage of cell viability. (B) Annexin V-FITC/PI staining and FCM determined the percentage of apoptotic cells. (C) Caspase3 and caspase9 activity assays tested the indicated activity. (D, H) Western blotting detected protein expression of bcl-2, bax, ATF6, CHOP, and GAPDH (as loading control). (E-G) ROS, MDA and SOD assay kits tested ROS level, MDA level and SOD activity, respectively. *P<0.05. (TIF 1537 KB)

13273_2023_349_MOESM2_ESM.tif

Supplementary file2 Role of circKLHL2 exhaustion in cytotoxicity, apoptosis, and oxidative and ER stresses. (A-I) 16HBE cells were expressed with sh-NC and sh-circKLHL2 via 24 h-transfection, and then insulted by 10 μg/mL of LPS for 24 h. (A) QPCR examined circKLHL2 expression. (B) CCK8 assay measured the percentage of cell viability. (C) Annexin V-FITC/PI staining and FCM determined the percentage of apoptotic cells. (D) Caspase3 and caspase9 activity assays tested the indicated activity. (E, I) Western blotting detected protein expression of bcl-2, bax, ATF6, CHOP, and GAPDH (as loading control). (F-H) ROS, MDA and SOD assay kits tested ROS level, MDA level and SOD activity, respectively. *P<0.05. (TIF 1183 KB)

13273_2023_349_MOESM3_ESM.tif

Supplementary file3 Role of circKLHL2/miR-338-3p/ATF6 axis in mitochondrial dysfunction. (A) Evaluation of ΔΨm in 16HBE cells by FCM. (B) Detection of ATP levels in 16HBE cells. (C) Relative mtDNA copy numbers in 16HBE cells. *P<0.05. (TIF 338 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wu, R. & Zhao, Z. CircKLHL2 mitigates septic lung injury via circKLHL2-miR-338-3p-ATF6 ceRNA pathway. Mol. Cell. Toxicol. 20, 353–365 (2024). https://doi.org/10.1007/s13273-023-00349-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-023-00349-y

Keywords

Navigation