Skip to main content
Log in

Clinical genetic strategies for early onset neurodegenerative diseases

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Purpose of review

Methods for the genetic diagnosis of neurodegenerative disorders were reviewed, including their backgrounds and applications in the laboratory. Majority of disease-causing gene mutations were uncommon in the general population, where dominant variations could be easily identified in certain disorders. The development of molecular, next generation sequencing (NGS) and cytogenetic techniques allowed to identify multiple genetic mutations leading to diseases. Using of the accurate multivariate diagnosis of diseases would be essential for appropriate treatment of patients, genetic counseling and prevention strategies

Recent findings

Abnormal genes play an extremely important role in the pathogenesis of neurodegenerative disorders of the nervous system. Many studies of genetic have clearly indicated that the molecular mechanisms underlying the etiology and pathogenesis of most neurodegenerative disorders until now. Mutation is necessary for life, while fidelity is necessary for DNA replication. Mistakes in DNA replication/transcription can cause cells to produce either too much or too little protein or a defective protein. Studies on mutations have revealed the normal functions of genes, messages, proteins, the causes of many diseases, and the variability of responses among individuals. Based on the presence of damaging variants, there are many genes have identified that associated with neurodegenerative disorders through to genetic analyses of patients. This declaration is interesting because also our previous analysis has shown that several types of neurodegenerative diseases associated with abnormal genes function have been well described, including Alzheimer’s disease (AD), front temporal dementia (FTD), amyotrophic lateral sclerosis (ALS), prion disease, and Parkinson’s disease (PD). Since the potential treatment strategies for these disorders may be more successful during the pre-clinical stages than in the actual clinical setup, accurate, simple, and affordable diagnostic methods are needed. A mutation can be defined as a sequence change in a test sample compared to the sequence of a reference standard. This has led to the development of methods for screening and detecting abnormal DNA, including techniques that detect previously described mutations (genotyping) and those that scan for mutations in a particular target region (mutation scanning). This review provides a broad overview of the range of currently available mutation detection techniques with special emphasis on neurodegenerative disorders in humans. We have discussed the methods used for detecting unknown mutations, such as ribonuclease, denaturing gradient-gel electrophoresis, carbodiimide, chemical cleavage, single- strand conformation polymorphism, heteroduplex, and sequencing. Furthermore, other diagnostic methods for testing mutations include allele-specific oligonucleotide hybridization; allele-specific amplification, ligation, primer extension, and the artificial introduction of restriction sites are also reviewed. In order to identify the mutation, the last of the work provides basic insights into some of the most popular in silico tools for splicing defect prediction from the viewpoint of end users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schork, N. J., Fallin, D. & Lanchbury, J. S. Single nucleotide polymorphisms and the future of genetic epidemiology. Clinical Genetics 58, 250–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kruglyak, L. & Nickerson, D. A. Variation is the spice of life. Nature Genet 27, 234–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Stephens, J. C. et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Bromberg, Y. & Rost, B. SNAP: predict effect of nonsynonymous polymorphisms on function. Nucleic Acids Res 35, 3823–3835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Emahazion, T. et al. SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends in Genetics 17, 407–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Hattersley, A. T. & McCarthy, M. I. What makes a good genetic association study? Lancet 366, 1315–1323 (2005).

    Article  PubMed  Google Scholar 

  8. Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nat Genet 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77, 78–88 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat Genet 37, 727–732 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Dean, M. Approaches to identify genes for complex human diseases: Lessons from Mendelian disorders. Hum Mutat 22, 261–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Mathew, C. Science medicine and the future: Postgenomic technologies: hunting the genes for common disorders. BMJ 322, 1031–1034 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nat Rev Genet 2, 91–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Giau, V. V., Bagyinszky, E., An, S. S. & Kim, S. Y. Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr Disease Treatment 11, 1723–1737 (2015).

    Article  CAS  Google Scholar 

  15. Mathew, C. G. DNA diagnostics: goals and Challenges. Br Med Bull 55, 325–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Giau, V. V., An, S. S., Bagyinszky, E. & Kim, S. Y. Gene panels and primers for next generation sequencing studies on neurodegenerative disorders. Molecular & Cellular Toxicology 11, 89–143 (2015).

    Article  CAS  Google Scholar 

  17. Hebert, L. E., Scherr, P. A., Bienias, J. L., Bennett, D. A. & Evans, D. A. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60, 1119–1122 (2003).

    Article  PubMed  Google Scholar 

  18. Bird. D. T. Genetic Aspects of Alzheimer Disease. Genet Med 10, 231–239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knopman, D. S. et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56, 1143–1153 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Perl, D. P. Neuropathology of Alzheimer’s disease. Mt Sinai J Med 77, 32–42 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun, Y. et al. Next-generation diagnostics: gene panel, exome, or whole genome? Hum Mutat 36, 648–655 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Meyer, J. M. & Breitner, J. C. Multiple threshold model for the onset of Alzheimer’s disease in the NAS-NRC twin panel. Am J Med Genet 81, 92–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Rossor, M. N., Fox, N. C., Mummery, C. J., Schott, J. M. & Warren, J. D. The diagnosis of young-onset dementia. Lancet Neurol 9, 793–806 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rogaev, E. I. et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Kowalska, A. et al. Genetic study of familial cases of Alzheimer’s disease. Acta Biochim Pol 51, 245–252 (2004).

    CAS  PubMed  Google Scholar 

  28. Rossor, M. N. et al. The diagnosis of young-onset dementia. Lancet Neurol 9, 793–806 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tanzi, R. E. et al. Assessment of amyloid β-protein precursor gene mutations in a large set of familial and sporadic Alzheimer disease cases. Am J Med Genet 51, 273–282 (1992).

    CAS  Google Scholar 

  30. Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63, 168–174 (2006).

    Article  PubMed  Google Scholar 

  31. Selkoe, D. J. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81, 741–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Barnes, D. E. & Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10, 819–828 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Strittmatter, W. J. et al. Apolipoprotein E: highavidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90, 1977–1981 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Namba, Y., Tamonaga, M., Kawasaki, H., Otomo, E. & Ikeda, K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and cru plaque amyloid in Creutzfeldt-Jakob disease. Brain Research 541, 163–166 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Pericak-Vance, M. A. et al. Linkage studies in familial Alzheimer’s disease: evidence for chromosome 19 linkage. Am J Hum Genet 48, 1034–1050 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Corder, E. H. et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Gene 7, 180–184 (1994).

    Article  CAS  Google Scholar 

  37. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. JAMA 278, 1349–1356 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Locke, P. A., Conneally, P. M., Tanzi, R. E., Gusella, J. F. & Haines, J. L. Apolipoprotein E4 allele and Alzheimer disease: examination of allelic association and effect on age at onset in both early-and late-onset cases. Genet Epidemiol 12, 83–92 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Bergem, A. L. Heredity in dementia of the Alzheimer type. Clin Genet 46, 144–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Rabbani, B., Tekin, M. & Mahdieh, N. The promise of whole-exome sequencing in medical genetics. J Human Genetics 59, 5–15 (2014).

    Article  CAS  Google Scholar 

  41. So, H. C., Gui, A. H., Cherny, S. S. & Sham, P. C. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet Epidemiol 35, 310–317 (2011).

    Article  PubMed  Google Scholar 

  42. Grupe, A. et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet 16, 865–873 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Coon, K. D. et al. A highdensity whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 68, 613–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Corder, E. H. et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7, 180–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41, 1088–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seshadri, S. et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303, 1832–1840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with lateonset Alzheimer’s disease. Nat Genet 43, 436–441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43, 429–435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rogaeva, E. et al. The neuronal sortilinrelated receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39, 168–177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tosto, G. et al. F-box/LRR-repeat protein 7 is genetically associated with Alzheimer’s disease. Ann Clin Transl Neurol 2, 810–820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, M. et al. Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate {alpha}-secretase activity. Hum Mol Genet 18, 3987–3996 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cruchaga, C. et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505, 550–554 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Bird, D. T. Genetic Aspects of Alzheimer Disease. Genet Med 10, 231–239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Logue, M. W. et al. Two rare AKAP9 variants are associated with Alzheimer’s disease in African Americans. Alzheimers Dement 10, 609–618.e11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Allen, M. et al. Late-onset Alzheimer disease risk variants mark brain regulatory loci. Neurol Genet 1, e15 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nature Rev Genet 12, 32–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Chamary, J. V. & Hurst, L. D. The price of silent mutations. Scientific American 300, 46–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Schattner, P. & Diekhans, M. Regions of extreme synonymous codon selection in mammalian genes. Nucleic Acids Res 34, 1700–1710 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kimchi-Sarfaty, C. et al. A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Sauna, Z. E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12, 683–691 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, R., Davydov, E. V., Sirota, M. & Butte, A. J. Nonsynonymous and synonymous coding SNPs show similar likelihood and effect size of human disease association. PLoSONE 5, e13574 (2010).

    Article  CAS  Google Scholar 

  65. Nyrén, P. Enzymatic method for continuous monitoring of DNA polymerase activity. Analytical Biochemistry 167, 235–248 (1987).

    Article  PubMed  Google Scholar 

  66. Greenwood, P. M., Lin, M. K., Sundararajan, R., Fryxell, K. J. & Parasuraman, R. Synergistic effects of genetic variation in nicotinic and muscarinic receptors on visual attention but not working memory. Proc Natl Acad Sci USA 106, 3633–3638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu, J. et al. Polymorphic Variation in Cytochrome Oxidase Subunit Genes. J Alzheimers Dis 21, 141–154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, S. Y., He, X. Y. & Miller, D. D. HSD17B10: A gene involved in cognitive function through metabolism of isoleucine and neuroactive steroids. Mol Genet Metab 92, 36–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Ribases, M. et al. Association study of 10 genes encoding neurotrophic factors and their receptors in adult and child attention-deficit/hyperactivity disorder. Biol Psychiatr 63, 935–945 (2008).

    Article  CAS  Google Scholar 

  70. Dhaenens, C. M. et al. A genetic variation in the ADORA2A gene modifies age at onset in Huntington’s disease. Neurobiol Dis 35, 474–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Watanabe, Y. et al. A two-stage case-control association study of PADI2 with schizophrenia. J Human Genetics 54, 430–432 (2009).

    Article  CAS  Google Scholar 

  72. Sebat, J. et al. Large-Scale Copy Number Polymorphism in the Human Genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Tzvetkov, M. V., Brockmoller, J., Roots, I. & Kirchheiner, J. Common genetic variations in human brain-specific tryptophan hydroxylase-2 and response to antidepressant treatment. Pharmacogenet Genomics 18, 495–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, Q. et al. Detection of RASA1 mutations in patients with sporadic Sturge-Weber syndrome. Childs Nerv Syst 27, 603–607 (2011).

    Article  PubMed  Google Scholar 

  75. Ho, P. Y. et al. Simultaneous assessment of the effects of exonic mutations on RNA splicing and protein functions. Biochem Biophys Res Commun 373, 515–520 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Nackley, A. G. et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314, 1930–1933 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Oberacher, H. et al. Direct molecular haplotyping of multiple polymorphisms within exon 4 of the human catechol-Omethyltransferase gene by liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Anal Bioanal Chem 386, 83–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 86, 2766–2770 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sarmiento, U. M. & Storb, R. F. Restriction fragment length polymorphism of the major histocompatibility complex of the dog. Immunogenetics 28, 117–124 (1988).

    Article  CAS  PubMed  Google Scholar 

  80. Rosenbaum, V. & Riesner, D. Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extract. Biophys Chem 26, 235–246 (1987).

    CAS  Google Scholar 

  81. Wartell, R. M., Hosseini, S. H. & Moran, C. P. Detecting base pair substitutions in DNA fragments by temperature-gradient gel electrophoresis. Nucleic Acids Res 18, 2699–2705 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ronaghi, M. Pyrosequencing sheds light on DNA sequencing. Genome Research 11, 3–11 (2011).

    Article  Google Scholar 

  84. Ronaghi, M. et al. Real-time DNA sequencing using detection of pyrophosphate release. Analytical Biochemistry 242, 84–89 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Ronaghi, M. Improved performance of pyrosequencing using single-stranded DNA-binding protein. Analytical Biochemistry 286, 282–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–480 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rabbani, B., Tekin, M. & Mahdieh, N. The promise of whole-exome sequencing in medical genetics. J Human Genetics 59, 5–15 (2014).

    Article  CAS  Google Scholar 

  88. Botstein, D., White, R. L., Skolnick, M. & David, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genetics 32, 314–331 (1980).

    CAS  Google Scholar 

  89. Lyamichev, V. et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotech 17, 292–296 (1999).

    Article  CAS  Google Scholar 

  90. Hall, J. G. et al. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc Natl Acad Sci USA 97, 8272–8277 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McGall, G. H. & Christians, F. C. High-density GeneChip oligonucleotide probe arrays. Adv Biochem Eng Biotechnol 77, 21–42 (2002).

    CAS  PubMed  Google Scholar 

  92. Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase-mediated gene detection technique. Science 1988, 241, 1077–1080.

    Google Scholar 

  93. Kim, S. & Misra, A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9, 289–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bao, L., Zhou, M. & Cui, Y. nsSNPAnalyzer: Identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res 33, 480–482 (2005).

    Article  CAS  Google Scholar 

  96. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42, 252–258 (2014).

    Article  CAS  Google Scholar 

  97. Tavtigian, S. V., Greenblatt, M. S., Lesueur, F. & Byrnes, G. B. In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 29, 1327–1336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leong, I. U., Skinner, J. & Love, D. Application of massively parallel sequencing in the clinical diagnostic testing of inherited cardiac conditions. Med Sci 2, 98–126 (2014).

    Google Scholar 

  99. Bromberg, Y. & Rost, B. SNAP: predict effect of nonsynonymous polymorphisms on function. Nucleic Acids Res 35, 3823–3835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L. & Casadio, R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 30, 1237–1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Ng, P. C. & Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res 11, 863–874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ng, P. C. & Henikoff, S. Accounting for human polymorphisms predicted to affect protein function. Genome Res 12, 436–446 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS One 7, e46688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymouse variants on protein function using the SIFT algorithm. Nat Protocols 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41, 377–386. doi:10.1093/nar/gks1118 (2013).

    Article  CAS  Google Scholar 

  106. Stone, E. A. & Sidow, A. Physicochemical constraint violation by missense substitution mediates impairment of protein function and disease severity. Genome Res 15, 978–986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Carmel, I., Tal, S., Vig, I. & Ast, G. Comparative analysis detects dependencies among the 5ʹ splice-site positions. RNA 10, 828–840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shapiro, M. B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15, 7155–7174 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Reese, M. G., Eeckman, F. H., Kulp, D. & Haussler, D. Improved splice site detection in Genie. J Comput Biol 4, 311–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Pertea, M., Lin, X. & Salzberg, S. L. GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res 29, 1185–1190 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Desmet, F. O. et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37, e67 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: Applications to cancer genomics. Nucleic Acids Res 39, e118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dogan, R. I., Getoor, L., Wilbur, W. J. & Mount, S. M. SplicePort: an interactive splice-site analysis tool. Nucleic Acids Res 35, 285–291 (2007).

    Article  Google Scholar 

  114. Ryan, M., Diekhans, M., Lien, S., Liu, Y. & Karchin, R. LS-SNP/PDB: Annotated non-synonymous SNPs mapped to protein data bank structures. Bioinformatics 25, 1431–1432 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. De Baets, G. et al. SNP effect 4.0: Online prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res 40, 935–939 (2012).

    Article  CAS  Google Scholar 

  116. Capriotti, E., Fariselli, P. & Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33, 306–310 (2005).

    Article  CAS  Google Scholar 

  117. Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nature Protocols 7, 1511–1522 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Webb, B. & Sali, A. Comparative Protein Structure Modeling Using Modeller. Curr Protoc Bioinformatics 47, 5.6.1–5.6.32. doi:10.1002/0471250953.bi0506s47 (2014).

    Article  Google Scholar 

  119. Yang, J. et al. The I-TASSER Suite: Protein structure and function prediction. Nature Methods 12, 7–8. doi:10.1038/nmeth.3213 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10, 845–858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Belmont, J. W. & Leal, S. M. Complex phenotypes and complex genetics: an introduction to genetic studies of complex traits. Curr Atheroscler Rep 27, 180–187 (2005).

    Article  Google Scholar 

  122. Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nat Rev Genet 2, 91–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Stone, E. A. & Sidow, A. Physicochemical constraint violation by missense substitution mediates impairment of protein function and disease severity. Genome Res 15, 978–986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. Ten years of next-generation sequencing technology. Trends Genet 30, 418–426 (2014).

    Article  PubMed  CAS  Google Scholar 

  125. Wade, C. H., Tarini, B. A. & Wilfond, B. S. Growing up in the genomic era: implications of whole-genome sequencing for children, families, and pediatric practice. Annu Rev Genomics Hum Genet 14, 535–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chrystoja, C. C. & Diamandis, E. P. Whole genome sequencing as a diagnostic test: challenges and opportunities. Clin Chem 60, 724–733 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Thomas, P. D. The Gene Ontology and the Meaning of Biological Function. Methods Mol Biol 1446, 15–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Deng, M., Tu, Z., Sun, F. & Chen, T. Mapping Gene Ontology to proteins based on protein-protein interaction data. Bioinformatics 20, 895–902 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Al-Shahrour, F., Díaz-Uriarte, R. & Dopazo, J. Fati-GO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578–580 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Lee, J. S., Katari, G. & Sachidanandam, R. GObar: a gene ontology based analysis and visualization tool for gene sets. BMC Bioinformatics 6, 189 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Luthra, R., Chen, H., Roy-Chowdhuri, S. & Singh, R. R. Next-Generation Sequencing in Clinical Molecular Diagnostics of Cancer: Advantages and Challenges. Cancers 7, 2023–2036 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eva Bagyinszky or Seong Soo A. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giau, V.V., Bagyinszky, E., An, S.S.A. et al. Clinical genetic strategies for early onset neurodegenerative diseases. Mol. Cell. Toxicol. 14, 123–142 (2018). https://doi.org/10.1007/s13273-018-0015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0015-3

Keywords

Navigation