Skip to main content
Log in

Gene panels and primers for next generation sequencing studies on neurodegenerative disorders

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2015

Abstract

Several types of neurodegenerative diseases were described, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), prion disease, and Parkinson’s disease (PD). Since the potential treatment strategies of these disorders might be more successful in the pre-clinical stages than in the actual clinical setup, new diagnostic methods were needed. The involvement of heredity in neurodegenerative disorders was established, but several neurodegenerative disorders such as AD, PD, ALS, FTD and Huntington’s disease (HD) are highly complex. Sanger sequencing was used to detect mutations that are causative or risk factors for diseases. The problem with standard sequencing is its high cost and low speed. Recently, next generation sequencing (NGS) strategies were developed, which could provide a more complex genetic analysis of patients with neurodegenerative diseases. In this study, 50 genes were selected, which were established as causative genes for neurodegenerative diseases, but we also included several risk factor genes and candidate genes. Primers (maximum 400-bp length) were designed to screen for mutations and variants in them. We plan to use these primers for NGS screening to create a more detailed genetic profile for these patients. This study could enhance disease diagnosis and would be also helpful in estimating the risk for disease onset in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skovronsky, D. M., Virginia, M., Lee, Y. & Trojanowski, J. Q. Neurodegenerative disorders: New Concepts of Pathogenesis and Their Therapeutic Implications. Annu Rev Pathol 1:151–170 (2005).

    Article  CAS  Google Scholar 

  2. Ramanan, V. K. & Saykin, A. J. Pathways to neurodegen-eration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegener Dis 2:145–175 (2013).

    PubMed Central  PubMed  Google Scholar 

  3. Bertram, L. & Tanzi, R. E. The genetic epidemiology of neurodegenerative disease. J Clin Invest 115:1449–1457 (2005).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Bagyinszky, E., Youn, Y. C., An, S. S. & Kim, S. Y. The genetics of Alzheimer’s disease. Clin Interv Aging 9:535–551 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Alves, L., Correia, A. S., Miguel, R., Alegria, P. & Bugalho, P. Alzheimer’s Disease: A Clinical Practice-Oriented Review. Front Neurol 3:63 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bagyinszky, E., Youn, Y. C., An, S. S. & Kim, S. Y. Diagnostic methods and biomarkers for Alzheimer’s disease. Toxicology and Environmental Health Scienc-es 6:133–147 (2014).

    Article  Google Scholar 

  7. Perl, D. P. Neuropathology of Alzheimer’s disease. Mt Sinai J Med 77:32–42 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Martin, J. B. Molecular basis of the neurodegenerative disorders. N Engl J Med 340:1970–1980 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. Marcon, G. et al. A novel Italian presenilin 2 gene mu-tation with prevalent behavioral phenotype. J Alzhei-mers Dis 16:509–511 (2009).

    CAS  Google Scholar 

  10. Wang, C. et al. The role of pro-inflammatory S100A9 in Alzheimer’s disease amyloid-neuroinflammatory cascade. Acta Neuropathol 127:507–522 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Bagyinszky, E., Youn, Y. C., An, S. S. & Kim, S. Y. Characterization of inflammatory biomarkers and can-didates for diagnosis of Alzheimer’s disease. BioChip J 8:155–162 (2014).

    Article  CAS  Google Scholar 

  12. Hazrati, L. N. et al. Genetic association of CR1 with Alzheimer’s disease: a tentative disease mechanism. Neurobiol Aging 33:2949–2949 (2012).

    Article  PubMed  CAS  Google Scholar 

  13. Crehan, H. et al. Complement receptor 1 (CR1) and Alzheimer’s disease. Immunobiology 217:244–250 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Tan, M. S., Yu, J. T. & Tan, L. Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends Mol Med 19:594–603 (2013).

    Article  PubMed  CAS  Google Scholar 

  15. Neumann, H. & Daly, M. J. Variant TREM2 as risk factor for Alzheimer’s disease. N Engl J Med 368:182–184 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Szymanski, M., Wang, R., Bassett, S. S. & Avramo-poulos, D. Alzheimer’s risk variants in the clusterin gene are associated with alternative splicing. Transl Psychiatry 1:18 (2011).

    Article  CAS  Google Scholar 

  17. Yu, J. T. & Tan, L. The role of clusterin in Alzheimer’s disease: pathways, pathogenesis, and therapy. Mol Neurobiol 45:314–326 (2012).

    Article  PubMed  CAS  Google Scholar 

  18. Miyashita, A. et al. Genetic association of CTNNA3 with late-onset Alzheimer’s disease in females. Hum Mol Genet 16:2854–2869 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. Bettens, K. et al. DNMBP is genetically associated with Alzheimer dementia in the Belgian population. Neurobiol Aging 30:2000–2009 (2009).

    Article  PubMed  CAS  Google Scholar 

  20. Kuwano, R. et al. Dynamin-binding protein gene on chromosome 10q is associated with late-onset Alzhei-mer’s disease. Hum Mol Genet 15:2170–2182 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Morgan, A. R. et al. Association analysis of dynamin-binding protein (DNMBP) on chromosome 10q with late onset Alzheimer’s disease in a large caucasian UK sample. Am J Med Genet B Neuropsychiatr Genet 150B:61–64 (2009).

    Article  CAS  Google Scholar 

  22. Rogaeva, E. et al. The neuronal sortilin-related recep-tor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–177 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Kirschling, C. M. et al. Polymorphism in the BACE gene influences the risk for Alzheimer’s disease. Neu-roreport 14:1243–1246 (2003).

    CAS  Google Scholar 

  24. Scotland, P. B. et al. The PICALM protein plays a key role in iron homeostasis and cell proliferation. PLoS One 7:e44252 (2012).

  25. Parikh, I., Fardo, D. W. & Estus, S. Genetics of PICALM expression and Alzheimer’s disease. PLoS One 9: e91242 (2014).

  26. Pan, X. L., Ren, R. J., Wang, G., Tang, H. D. & Chen, S. D. The Gab2 in signal transduction and its potential role in the pathogenesis of Alzheimer’s disease. Neuro-sci Bull 26:241–246 (2010).

    Article  CAS  Google Scholar 

  27. Ikram, M. A. et al. The GAB2 gene and the risk of Alzheimer’s disease: replication and meta-analysis. Biol Psychiatry 65:995–999 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. De Ferrari, G. V. et al. Common genetic variation with-in the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc Natl Acad Sci USA 104:9434–9439 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Liu, C. C. et al. Deficiency in LRP6-mediated Wnt sig-naling contributes to synaptic abnormalities and amy-loid pathology in Alzheimer’s disease. Neuron 284:63–77 (2014).

    Article  CAS  Google Scholar 

  30. Larner, A. J. & Doran, M. Clinical phenotypic hetero-geneity of Alzheimer’s disease associated with muta-tions of the presenilin-1 gene. J Neurol 253:139–158 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Vassar, R. ADAM10 prodomain mutations cause late-onset Alzheimer’s disease: not just the latest FAD. Neuron 80:250–253 (2013).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Zhao, Q. F., Yu, J. T., Tan, M. S. & Tan, L. ABCA7 in Alzheimer’s Disease. Mol Neurobiol 51:1008–1016 (2015).

    Article  PubMed  CAS  Google Scholar 

  33. Bradshaw, E. M. et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850 (2013).

    Article  PubMed  CAS  Google Scholar 

  34. Lyall, D. M. et al. Alzheimer’s disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiol Aging 35:1513.e25-33 (2014).

  35. Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99 (2012).

    Article  PubMed  CAS  Google Scholar 

  36. De Jonghe, C. et al. Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Hum Mol Genet 10:1665–1671 (2001).

    Article  PubMed  Google Scholar 

  37. Schulte, C. & Gasser, T. Genetic basis of Parkinson’s disease: inheritance, penetrance, and expression. Appl Clin Genet 4:67–80 (2011).

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Bonini, N. M. & Giasson, B. I. Snaring the function of alpha-synuclein. Cell 123:359–361 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. Lesage, S. & Brice, A. Parkinson’s disease: from mono-genic forms to genetic susceptibility factors. Hum Mol Genet 18(R1):48–59 (2009).

    Article  CAS  Google Scholar 

  40. Padney, S. Parkinson’s Disease: Recent Advances. JAPI 60:30–32 (2012).

    Google Scholar 

  41. Abou-Sleiman, P. M., Muqit, M. M. & Wood, N. W. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. Beilina, A. et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci USA 102:5703–5708 (2005).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Chu, C. T. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkin-son disease. Hum Mol Genet 19(R1):R28–37 (2010).

    Article  CAS  Google Scholar 

  44. Abou-Sleiman, P. M., Healy, D. G., Quinn, N., Lees, A. J. & Wood, N. W. The role of pathogenic DJ-1 mu-tations in Parkinson’s disease. Ann Neurol 54:283–286 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. Kahle, P. J., Waak, J. & Gasser, T. DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders. Free Radic Biol Med 47:1354–1361 (2009).

    Article  PubMed  CAS  Google Scholar 

  47. Tsunemi, T., Hamada, K. & Krainc, D. ATP13A2/PARK9 regulates secretion of exosomes and a-synu-clein. J Neurosci 34:15281–15287 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Dehay, B. et al. Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Autophagy 8: 1389–1391 (2012).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Aharon-Peretz, J., Rosenbaum, H. and Gershoni-Ba-ruch, R. Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 351:1972–1977 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. Charrow, J. et al. Enzyme replacement therapy and monitoring for children with type 1 Gaucher disease: consensus recommendations. J Pediatr 144:112–120 (2004).

    Article  PubMed  CAS  Google Scholar 

  51. Bonini, N. M. & Giasson, B. I. Snaring the function of alpha-synuclein. Cell 123:359–361 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. Dawson, T. M. & Dawson, V. L. The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord 25(Suppl 1):32–39 (2010).

    Article  Google Scholar 

  53. Kay, D. M. et al. A comprehensive analysis of dele-tions, multiplications, and copy number variations in PARK2. Neurology 75:1189–1194 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Cookson, M. R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci 11:791–797 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Mata, I. F., Wedemeyer, W. J., Farrer, M. J., Taylor, J. P. & Gallo, K. A. LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends Neurosci 29: 286–293 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. Weder, N. D., Aziz, R., Wilkins, K. & Tampi, R. R. Frontotemporal dementias: a review. Ann Gen Psychi-atry 6:15 (2007).

    Article  Google Scholar 

  57. Boxer, A. L. & Miller, B. L. Clinical features of fron-totemporal dementia. Alzheimer Dis Assoc Disord 19: Suppl 1:S3–6 (2005).

    Article  Google Scholar 

  58. Shen, L., Bagyinszky, E., Youn, Y. C., An, S. S. & Kim, S. Y. Genetic factors in frontotemporal dementia: A review. Toxicology and Environmental Health Sciences 5:113–130 (2013).

    Article  Google Scholar 

  59. Al-Chalabi, A. et al. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 124: 339–352 (2012).

    Article  PubMed  CAS  Google Scholar 

  60. Hardiman, O., van den Berg, L. H. and Kiernan, M. C. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7:639–649 (2011).

    Article  PubMed  CAS  Google Scholar 

  61. Zago, S., Poletti, B., Morelli, C., Doretti, A. & Silani, V. Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Arch Ital Biol 149:39–56 (2011).

    PubMed  Google Scholar 

  62. Vanden Broeck, L., Callaerts, P. and Dermaut, B. TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol Med 20:66–71 (2014).

    Article  PubMed  CAS  Google Scholar 

  63. Lee, J. A. & Gao, F. B. ESCRT, autophagy, and fronto-temporal dementia. BMB Rep 41:827–832 (2008).

    Article  PubMed  CAS  Google Scholar 

  64. Momeni, P. et al. Genetic variability in CHMP2B and frontotemporal dementia. Neurodegener Dis 3:129–133 (2006).

    Article  PubMed  CAS  Google Scholar 

  65. Cavey, J. R. et al. Loss of ubiquitin-binding associated with Paget’s disease of bone p62 (SQSTM1) mutations. J Bone Miner Res 20:619–624 (2005).

    Article  PubMed  CAS  Google Scholar 

  66. Vadlamudi, R. K., Joung, I., Strominger, J. L. & Shin, J. p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiq-uitin-binding proteins. J Biol Chem 271:20235–20237 (1996).

    Article  PubMed  CAS  Google Scholar 

  67. Le Ber, I. et al. SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal de-mentia with amyotrophic lateral sclerosis. JAMA Neu-rol 70:1403–1410 (2013).

    Google Scholar 

  68. Belzil, V. V. et al. Genetic analysis of SIGMAR1 as a cause of familial ALS with dementia. Europ J Hum Genet 21:237–239 (2013).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Al-Saif A., Al-Mohanna, F. & Bohlega, S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70:913–919 (2011).

    Article  PubMed  CAS  Google Scholar 

  70. Guyant-Maréchal, L. et al. Valosin-containing protein gene mutations: clinical and neuropathologic features. Neurology 67:644–651 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. Ju, J. S., Miller, S. E., Hanson, P. I. & Weihl, C. C. Impaired protein aggregate handling and clearance un-derlie the pathogenesis of p97/VCP-associated disease. J Biol Chem 283:30289–30299 (2008).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Con-verging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438 (2013).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Yancopoulou, D. et al. Tau protein in frontotemporal dementia linked to chromosome 3 (FTD-3). J Neuro-pathol Exp Neurol 62:878–882 (2003).

    CAS  Google Scholar 

  74. Neumann, M. et al. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134:2595–2609 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  75. Deng, H. X. et al. Mutations in UBQLN2 cause domi-nant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215 (2011).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Eymard-Pierre, E. et al. Infantile-onset ascending he-reditary spastic paralysis is associated with mutations in the alsin gene. Am J Hum Genet 71:518–527 (2002).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Ferraiuolo, L., Kirby, J., Grierson, A. J., Sendtner, M. & Shaw, P. J. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7:616–630 (2011).

    Article  PubMed  CAS  Google Scholar 

  78. Chow, C. Y. et al. Mutation of FIG4 causes neurode-generation in the pale tremor mouse and patients with CMT4J. Nature 448:68–72 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Zhang, X. et al. Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131:1990–2001 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  80. Akizuki, M. et al. Optineurin suppression causes neu-ronal cell death via NF-kB pathway. J Neurochem 126:699–704 (2013).

    Article  PubMed  CAS  Google Scholar 

  81. Maruyama, H. & Kawakami, H. Optineurin and amy-otrophic lateral sclerosis. Geriatr Gerontol Int 13:528–532 (2013).

    Article  PubMed  Google Scholar 

  82. Sasabe, J. et al. D-amino acid oxidase controls moto-neuron degeneration through D-serine. Proc Natl Acad Sci USA 109:627–632 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  83. Mitchell, J. et al. Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc Natl Acad Sci USA 107:7556–6751 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  84. Pollard, A. J., Krainer, A. R., Robson, S. C. & Eu-rope-Finner, G. N. Alternative splicing of the adenylyl cyclase stimulatory G-protein G alpha(s) is regulated by SF2/ASF and heterogeneous nuclear ribonucleopro-tein A1 (hnRNPA1) and involves the use of an unusual TG 3’-splice Site. J Biol Chem 277:15241–15251 (2002).

    Article  PubMed  CAS  Google Scholar 

  85. Calini, D. et al. Analysis of hnRNPA1, A2/B1, and A3 genes in patients with amyotrophic lateral sclerosis. Neurobiol Aging 34:2695 (2013).

    Article  PubMed  CAS  Google Scholar 

  86. Ferraiuolo, L., Kirby, J., Grierson, A. J., Sendtner, M. & Shaw, P. J. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7:616–630 (2011).

    Article  PubMed  CAS  Google Scholar 

  87. Greenway, M. J. et al. ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413 (2006).

    Article  PubMed  CAS  Google Scholar 

  88. Kanekura, K., Nishimoto, I., Aiso, S. & Matsuoka, M. Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane pro-tein-associated protein B (VAPB/ALS8). J Biol Chem 281:30223–30233 (2006).

    Article  PubMed  CAS  Google Scholar 

  89. Nishimura, A. L. et al. A mutation in the vesicle-traf-ficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831 (2004).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Barber, S. C., Mead, R. J. & Shaw, P. J. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 1762:1051–1067 (2006).

    Article  PubMed  CAS  Google Scholar 

  91. Jonsson, P. A. et al. Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lat-eral sclerosis. Brain 127:73–88 (2004).

    Article  PubMed  Google Scholar 

  92. Shaw, B. F. & Valentine, J. S. How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci 32: 78–85 (2007).

    Article  PubMed  CAS  Google Scholar 

  93. Shimazaki, H. Clinical aspects of hereditary spas-tic paraplegias. Rinsho Shinkeigaku 54:1012–1015 (2014).

    Article  PubMed  Google Scholar 

  94. Ali, Z. S., Van Der Voorn, J. P. and Powers, J. M. A comparative morphologic analysis of adult onset leu-kodystrophy with neuroaxonal spheroids and pigment-ed glia-a role for oxidative damage. J Neuropathol Exp Neurol 66:660–672 (2007).

    Article  PubMed  Google Scholar 

  95. Dichgans, M. Cerebral autosomal dominant arteriop-athy with subcortical infarcts and leukoencephalop-athy: phenotypic and mutational spectrum. J Neurol Sci 203-204:77–80 (2002).

    Article  PubMed  Google Scholar 

  96. Kalaria, R. et al. The pathogenesis of CADASIL: an update. J Neurol Sci 226:35–39 (2004).

    Article  PubMed  CAS  Google Scholar 

  97. Shen, L. & Ji, H. F. Mutation directional selection sheds light on prion pathogenesis. Biochem Biophys Res Commun 41:59–163 (2011).

    Google Scholar 

  98. Claudiani, P., Riano, E., Errico, A., Andolfi, G. & Ru-garli, E. I. Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res 309:358–369 (2005).

    Article  PubMed  CAS  Google Scholar 

  99. Roll-Mecak, A. & Vale, R. D. Structural basis of mi-crotubule severing by the hereditary spastic paraple-gia protein spastin. Nature 17451:363–367 (2008).

    Article  CAS  Google Scholar 

  100. Tsaousidou, M. K. et al. Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet 82: 510–515 (2008).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Hehr, U. et al. Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia. Ann Neurol 62:656–665 (2007).

    Article  PubMed  CAS  Google Scholar 

  102. Paisan-Ruiz, C., Dogu, O., Yilmaz, A., Houlden, H. & Singleton, A. SPG11 mutations are common in famil-ial cases of complicated hereditary spastic paraplegia. Neurology 70:1384–1389 (2008).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Rademakers, R. et al. Mutations in the colony stim-ulating factor 1 receptor (CSF1R) gene cause heredi-tary diffuse leukoencephalopathy with spheroids. Nat Genet 44:200–205 (2011).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Mitsui, J. et al. CSF1R mutations identified in three families with autosomal dominantly inherited leuko-encephalopathy. Am J Med Genet B Neuropsychiatr Genet 159B:951–957 (2002).

    Google Scholar 

  105. Arboleda-Velasquez, J. F. et al. Linking Notch sig-naling to ischemic stroke. Proc Natl Acad Sci USA 105:4856–4861 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  106. Collinge, J. Molecular neurology of prion disease. J Neurol Neurosurg Psychiatry 76:906–919 (2005).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Kampke, T. et al. Efficient primer design algorithms. Bioinformatics 17:214–225 (2001).

    Article  PubMed  CAS  Google Scholar 

  108. Lowe, T. et al. A computer program for selection of oligonucleotide primers for polymerase chain reac-tions. Nucleic Acids Res 18:1757–1761 (1990).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Untergasser. et al. Primer3Plus, an enhanced web in-terface to Primer3. Nucleic Acids Res 35:71–74 (2007).

    Article  Google Scholar 

  110. Li, P. et al. PRIMO: A Primer Design Program That Applies Base Quality Statistics for Automated Large-Scale DNA Sequencing. Genomics 40:476–485 (1997).

    Article  PubMed  CAS  Google Scholar 

  111. Homepage of UCSC In-Silico PCR. http://genome.csdb.cn/cgi-bin/hgPcr?command=start.

  112. Andreson, R., Mols, T. & Remm, M. Predicting fail-ure rate of PCR in large genomes. Nucleic Acids Res 36:e66 (2008).

    Article  CAS  Google Scholar 

  113. Kent, W. J. BLAT-the BLAST-like alignment tool. Genome Research 12:656–664 (2002).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Beck, J. et al. Validation of next-generation sequenc-ing technologies in genetic diagnosis of dementia. Neurobiol Aging 35:261–265 (2014).

    Article  PubMed  CAS  Google Scholar 

  115. Quail, M. A. et al. A tale of three next generation se-quencing platforms: comparison of Ion Torrent, Pacif-ic Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341 (2012).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Berglund, E. C., Kiialainen, A. & Syvänen, A. C. Next-generation sequencing technologies and applica-tions for human genetic history and forensics. Investig Genet 2:23 (2011).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Chin, E. L., da Silva, C. and Hegde, M. Assessment of clinical analytical sensitivity and specificity of next-generation sequencing for detection of simple and complex mutations. BMC Genet 14:6 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eva Bagyinszky or SangYun Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Giau, V., An, S.S.A., Bagyinszky, E. et al. Gene panels and primers for next generation sequencing studies on neurodegenerative disorders. Mol. Cell. Toxicol. 11, 89–143 (2015). https://doi.org/10.1007/s13273-015-0011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-015-0011-9

Keywords

Navigation