Skip to main content
Log in

Transcriptomic change as evidence for cadmium-induced endocrine disruption in marine fish model of medaka, Oryzias javanicus

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

We evaluated cadmium (Cd)-induced acute toxicity in Oryzias javanicus (marine medaka or Javanese ricefish) and gathered transcriptomic evidence for the Cd-induced endocrine-disrupting effect. The median lethal concentrations for the fish were determined to be 44.25 and 27.80 mg/L after exposure to Cd in seawater for 24 and 48 h, respectively, and 2.84, 1.61, and 1.20 mg/L after exposure in freshwater for 24, 48, and 72 h, respectively. The differences in the bioavailability and activity of free Cd2+ caused by the salt concentration in seawater could explain these dramatic differences in the toxicity of Cd between marine and fresh water system. The genes differentially expressed in O. javanicus liver tissue after exposure to 280 μg/L CdCl2 for 48 h were profiled with a customized marine medaka cDNA microarray (HazChem Fish Array). We identified 204 differentially expressed genes; the expression of 66 genes was upregulated and that of 138 genes was downregulated (P<0.05). The total 31 genes were commonly expressed in fish exposed to Cd and two references of environmental disruptor (bisphenol A, or 17β-estradiol). These genes were used to predict the changes that occur in metabolic pathways and processes in response to Cd exposure. The database for annotation, visualization and integrated discovery (DAVID) was used for functional analysis for the differentially expressed genes. Significant changes were predicted in the steroid hormone and estrogen stimulus response, vitellogenin expression, sterol and cholesterol metabolic processes, lipid transport activity, defense response, innate immune response, and metal ion binding activity. These results extend our knowledge of the toxicity of Cd at the molecular level and indicate that Cd exposure causes endocrine disruption in aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iavicoli, I., Fontana, L. & Bergamaschi, A. The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev 12:206–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Piasek, M. & Laskey, J. W. Acute cadmium exposure and ovarian steroidogenesis in cycling and pregnant rats. Reprod Toxicol 8:495–507 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Lafuente, A., Cano, P. & Esquifino, A. Are cadmium effects on plasma gonadotropins, prolactin, ACTH, GH and TSH levels, dose-dependent? Biometals 16:243–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Zeng, X., Lin, T., Zhou, Y. & Kong, Q. Alterations of serum hormone levels in male workers occupationally exposed to cadmium. J Toxicol Environ Health A 65: 513–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Jurasovic, J. et al. Semen quality and reproductive endocrine function with regard to blood cadmium in Croatian male subjects. Biometals 17:735–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Garcia-Morales, P. et al. Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem 269:16896–16901 (1994).

    CAS  PubMed  Google Scholar 

  7. Inoue, K. & Takei, Y. Diverse adaptability in Oryzias species to high environmental salinity. Zoolog Sci 19: 727–734 (2002).

    Article  PubMed  Google Scholar 

  8. Inoue, K. & Takei, Y. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp Biochem Physiol B Biochem Mol Biol 136: 635–645 (2003).

    Article  PubMed  Google Scholar 

  9. Woo, S. et al. Heavy metal-induced differential gene expression of metallothionein in Javanese medaka, Oryzias javanicus. Mar Biotechnol (NY) 8:654–662 (2006).

    Article  CAS  Google Scholar 

  10. Woo, S. et al. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comp Biochem Physiol C Toxicol Pharmacol 149:289–299 (2009).

    Article  PubMed  Google Scholar 

  11. Woo, S. & Yum, S. Transcriptional response of marine medaka (Oryzias javanicus) on exposure to toxaphene. Comp Biochem Physiol C Toxicol Pharmacol 153:355–361 (2011).

    Article  PubMed  Google Scholar 

  12. Woo, S., Yum, S., Kim, D. W. & Park, H. S. Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide. Comp Biochem Physiol C Toxicol Pharmacol 149:427–432 (2009).

    Article  PubMed  Google Scholar 

  13. Woo, S., Denis, V. & Yum, S. Transcriptional changes caused by bisphenol A in Oryzias javanicus, a fish species highly adaptable to environmental salinity. Mar Drugs 12:983–998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Woo, S. et al. Expreßsion profiling of liver in Java medaka fish exposed to 17ß-estradiol. Mol Cell Toxicol 7:271–281 (2011).

    Article  CAS  Google Scholar 

  15. Woo, S., Won, H., Lee, A. & Yum, S. Oxidative streßs and gene expression in diverse tissues of Oryzias javanicus exposed to 17ß-estradiol. Mol Cell Toxicol 8:263–269 (2012).

    Article  CAS  Google Scholar 

  16. Yum, S., Jo, Y. J. & Woo, S. Metabolic changes in marine medaka fish (Oryzias javanicus) in response to acute 4-nonlyphenol toxicity. BioChip J 9:322–331 (2015).

    Article  CAS  Google Scholar 

  17. James, M. O. Steroid catabolism in marine and freshwater fish. J Steroid Biochem Mol Biol 127:167–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Kishida, M., McLellan, M., Miranda, J. A. & Callard, G. V. Estrogen and xenoestrogens upregulate the brain aromatase isoform (P450aromB) and perturb markers of early development in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 129:261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Wright, D. A. & Welbourn, P. M. Cadmium in the aquatic environment: a review of ecological, physiological, and toxicological effects on biota. Environ Rev 2:187–214 (1994).

    Article  CAS  Google Scholar 

  20. Lee, A. et al. Changes in gene expression profile due to acute toxicity of toxaphene in the marine medaka. Mol Cell Toxicol 9:121–128 (2013).

    Article  CAS  Google Scholar 

  21. Henson, M. C. & Chedrese, P. J. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med (Maywood) 229:383–392 (2004).

    CAS  Google Scholar 

  22. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57 (2009).

    Article  CAS  Google Scholar 

  23. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13 (2009).

    Article  Google Scholar 

  24. Kashiwada, S. et al. Fish test for endocrine-disruption and estimation of water quality of Japanese rivers. Water Res 36:2161–2166 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Pettersson, K. & Gustafsson, J. A. Role of estrogen receptor beta in estrogen action. Annu Rev Physiol 63: 165–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Meyer, C., Schmid, R., Scriba, P. C. & Wehling, M. Purification and partial sequencing of high-affinity progesterone-binding site (s) from porcine liver membranes. Eur J Biochem 239:726–731 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Losel, R. M., Besong, D., Peluso, J. J. & Wehling, M. Progesterone receptor membrane component 1-many tasks for a versatile protein. Steroids 73:929–934 (2008).

    Article  PubMed  Google Scholar 

  28. Stan, S. et al. Apo A-IV: an update on regulation and physiologic functions. Biochim Biophys Acta 1631: 177–187 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Rohe, H. J., Ahmed, I. S., Twist, K. E. & Craven, R. J. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther 121:14–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Mallory, J. C. et al. Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/Cyp51p in Saccharomyces cerevisiae. Mol Cell Biol 25:1669–1679 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungshic Yum.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YJ., Lee, N., Woo, S. et al. Transcriptomic change as evidence for cadmium-induced endocrine disruption in marine fish model of medaka, Oryzias javanicus . Mol. Cell. Toxicol. 12, 409–420 (2016). https://doi.org/10.1007/s13273-016-0045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-016-0045-7

Keywords

Navigation