Skip to main content
Log in

Metabolic changes in marine medaka fish (Oryzias javanicus) in response to acute 4-nonlyphenol toxicity

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The differentially expressed genes in the liver tissue of the marine medaka fish, Oryzias javanicus, were profiled using an oligo-microarray (EnviHaz Fish Array ver. 01) after the fish were exposed to 20 µg/L 4-nonylphenol (4-NP) for 12, 24, 48, or 72 h to determine the metabolic and physiological changes with exposure time. The transcriptomic changes were highly dynamic in the 4-NP-exposed fish in that among the 216 differentially expressed genes identified in all four exposed fish groups, 106 genes (49.1%) appeared after a specific exposure time. The differentially expressed genes were used to predict the changes that occurred in the metabolic pathways and processes in response to 4-NP exposure. Many physiological and metabolic changes were detected in the early phase of exposure. Significant vitellogenin expression and an estrogenic stimulus response were observed in the fish exposed to 4-NP for 48 h. These results extend our understanding of the biological responses to environmental chemicals at the molecular level and will allow the toxic effects of environmental chemicals, especially endocrine-disrupting chemicals, to be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jobling, S. et al. in State of the science of endocrine disrupting chemicals 2012 (eds. Berggren, Å., Heindel, J.J., Jobling, S., Kidd, K.A. & Zoeller, R.T.) 260 pp. (United Nations Environmental Programme and the World Health Organization, 2013).

  2. Zhang, L. et al. Effect of bisphenol A exposure during early development on glucose metabolism and adipokine expression in adolescent female rats. Mol. Cell. Toxicol. 9, 385–391 (2013).

    Article  CAS  Google Scholar 

  3. Lee, H.A. et al. Longitudinal changes in offspring body weight, fat mass and sex hormone levels according to maternal bisphenol A exposure during gestation and lactation. Mol. Cell. Toxicol. 9, 285–293 (2013).

    Article  CAS  Google Scholar 

  4. Sager, D.B., Shih-Schroeder, W. & Girard, D. Effect of early postnatal exposure to polychlorinated biphenyls (PCBs) on fertility in male rats. Bull. Environ. Contam. Toxicol. 38, 946–953 (1987).

    Article  CAS  Google Scholar 

  5. Jensen, A.A. & Leffers, H. Emerging endocrine disrupters: perfluoroalkylated substances. Int. J. Androl. 31, 161–169 (2008).

    Article  CAS  Google Scholar 

  6. Schreiber, T. et al. Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. Environ. Health. Perspect. 118, 572–578 (2010).

    Article  CAS  Google Scholar 

  7. Santodonato, J. Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: relationship to carcinogenicity. Chemosphere 34, 835–848 (1997).

    Article  CAS  Google Scholar 

  8. Raut, S.A. & Angus, R.A. Triclosan has endocrine-disrupting effects in male western Mosquitofish, Gambusia Affinis. Environ. Toxicol. Chem. 29, 1287–1291 (2010).

    CAS  Google Scholar 

  9. Rubin, B.S. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol. 127, 27–34 (2011).

    Article  CAS  Google Scholar 

  10. Jeong, S.W. et al. Genomic expression responses toward bisphenol-A toxicity in Daphnia magna in terms of reproductive activity. Mol. Cell. Toxicol. 9, 149–158 (2013).

    Article  CAS  Google Scholar 

  11. McCormick, S.D. et al. Endocrine disruption of parrsmolt transformation and seawater tolerance of Atlantic salmon by 4-nonylphenol and 17beta-estradiol. Gen. Comp. Endocrinol. 142, 280–288 (2005).

    Article  CAS  Google Scholar 

  12. Lagadic, L., Coutellec, M.A. & Caquet, T. Endocrine disruption in aquatic pulmonate molluscs: few evidences, many challenges. Ecotoxicology 16, 45–59 (2007).

    Article  CAS  Google Scholar 

  13. Leung, K.M.Y., Wheeler, J.R., Morritt, D. & Crane, M. Endocrine Disruption in Fishes and Invertebrates: Issues for Saltwater Ecological Risk Assessment. In: Coastal and Esturarine Risk Assessment (eds. Newman, M.C., Roberts, M.H.J. & Hale, R.C.) 189–215 (CRC Press, New York, 2001).

    Google Scholar 

  14. Mills, L.J. & Chichester, C. Review of evidence: are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Sci. Total. Environ. 343, 1–34 (2005).

    Article  CAS  Google Scholar 

  15. Inoue, K. & Takei, Y. Diverse adaptability in Oryzias species to high environmental salinity. Zoolog. Sci. 19, 727–734 (2002).

    Article  Google Scholar 

  16. Inoue, K. & Takei, Y. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 136, 635–645 (2003).

    Article  Google Scholar 

  17. Ekelund, R., Bergman, A., Granmo, A. & Berggren, M. Bioaccumulation of 4-nonylphenol in marine animals—a re-evaluation. Environ. Pollut. 64, 107–120 (1990).

    Article  CAS  Google Scholar 

  18. Spehar, R.L., Brooke, L.T., Markee, T.P. & Kahl, M.D. Comparative toxicity and bioconcentration of nonylphenol in freshwater organisms. Environ. Toxicol. Chem. 29, 2104–2111 (2010).

    CAS  Google Scholar 

  19. Vetillard, A. & Bailhache, T. Effects of 4-n-nonylphenol and tamoxifen on salmon gonadotropin-releasing hormone, estrogen receptor, and vitellogenin gene expression in juvenile rainbow trout. Toxicol. Sci. 92, 537–544 (2006).

    Article  CAS  Google Scholar 

  20. Xie, L. et al. Evaluation of estrogenic activities of aquatic herbicides and surfactants using an rainbow trout vitellogenin assay. Toxicol. Sci. 87, 391–398 (2005).

    Article  CAS  Google Scholar 

  21. Huang da, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

  22. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  23. Cho, H.-H., Song, M. & Ryu, J.C. Gene expression profile of endometrial carcinoma cells exposed to di-(2-ethylhexyl) phthalate. Mol. Cell. Toxicol. 9, 113–120 (2013).

    Article  CAS  Google Scholar 

  24. Guenther, K. et al. Endocrine disrupting nonylphenols are ubiquitous in food. Environ. Sci. Technol. 36, 1676–1680 (2002).

    Article  CAS  Google Scholar 

  25. Lussier, S.M. et al. Acute toxicity of para-nonylphenol to saltwater animals. Environ. Toxicol. Chem. 19, 617–621 (2000).

    Article  CAS  Google Scholar 

  26. Lee, A. et al. Changes in gene expression profile due to acute toxicity of toxaphene in the marine medaka. Mol. Cell. Toxicol. 9, 121–128 (2013).

    Article  CAS  Google Scholar 

  27. Woo, S., Denis, V. & Yum, S. Transcriptional changes caused by bisphenol A in Oryzias javanicus, a fish species highly adaptable to environmental salinity. Mar. Drugs 12, 983–998 (2014).

    Article  CAS  Google Scholar 

  28. Won, H., Woo, S. & Yum, S. Acute 4-nonylphenol toxicity changes the genomic expression profile of marine medaka fish, Oryzias javanicus. Mol. Cell. Toxicol. 10, 181–195 (2014).

    Article  CAS  Google Scholar 

  29. Yoshimura, K. Biodegradation and fish toxicity of nonionic surfactants. J. Am. Oil. Chem. Soc. 63, 1590–1596 (1986).

    Article  CAS  Google Scholar 

  30. Woo, S. et al. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149, 289–299 (2009).

    Article  Google Scholar 

  31. Woo, S., Yum, S., Kim, D.W. & Park, H.S. Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149, 427–432 (2009).

    Article  Google Scholar 

  32. Dong, Y. et al. Bisphenol A impairs mitochondrial function in spleens of mice via oxidative stress. Mol. Cell. Toxicol. 9, 401–406 (2013).

    Article  CAS  Google Scholar 

  33. Mahley, R.W. & Rall, S.C., Jr. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 1, 507–537 (2000).

    Article  CAS  Google Scholar 

  34. Stan, S. et al. Apo A-IV: an update on regulation and physiologic functions. Biochim. Biophys. Acta. 1631, 177–187 (2003).

    Article  CAS  Google Scholar 

  35. Spicer, L.J. & Aad, P.Y. Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF1 receptor: role of follicle-stimulating hormone and IGF2 receptor. Biol. Reprod. 77, 18–27 (2007).

    Article  CAS  Google Scholar 

  36. Pepys, M.B. & Hirschfield, G.M. C-reactive protein: a critical update. J. Clin. Invest. 111, 1805–1812 (2003).

    Article  CAS  Google Scholar 

  37. Kishore, U. et al. Structural and functional anatomy of the globular domain of complement protein C1q. Immunol. Lett. 95, 113–128 (2004).

    Article  CAS  Google Scholar 

  38. Gulick, T. et al. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl. Acad. Sci. U S A 91, 11012–11016 (1994).

    Article  CAS  Google Scholar 

  39. Evans, R.M., Barish, G.D. & Wang, Y.X. PPARs and the complex journey to obesity. Nat. Med. 10, 355–361 (2004).

    Article  CAS  Google Scholar 

  40. Hendershot, L.M. et al. Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics 20, 281–284 (1994).

    Article  CAS  Google Scholar 

  41. Patel, Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol. 20, 157–198 (1999).

    Article  CAS  Google Scholar 

  42. Sumpter, J.P. & Jobling, S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ. Health Perspect. 103(Suppl 7), 173–178 (1995).

    Article  CAS  Google Scholar 

  43. Delanghe, J.R. & Langlois, M.R. Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin. Chim. Acta. 312, 13–23 (2001).

    Article  CAS  Google Scholar 

  44. Kashiwada, S. et al. Fish test for endocrine-disruption and estimation of water quality of Japanese rivers. Water Res. 36, 2161–2166 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungshic Yum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yum, S., Jo, Y.J. & Woo, S. Metabolic changes in marine medaka fish (Oryzias javanicus) in response to acute 4-nonlyphenol toxicity. BioChip J 9, 322–331 (2015). https://doi.org/10.1007/s13206-015-9408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-015-9408-8

Keywords

Navigation