Skip to main content
Log in

Design and analysis of air launched fire-extinguishing devices

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Wildfires are an enormous source of human and environmental loss. Unmanned aircraft systems and fire-extinguishing balls (FEB) might help combat wildfires in their early stages of development. This paper addresses the design of FEB-based fire-extinguishing devices. The viability of four configurations for the device is evaluated. Trajectory simulations were performed using a six-degrees-of-freedom model. The device configurations’ static aerodynamic coefficients were obtained through computational fluid dynamics (CFD) and dynamic coefficients obtained through analytical methods. CFD results indicate that a tube-like tail has a transient behaviour in the tested speeds, and a conical tail is a suitable way to streamline the FEB. The trajectory simulations were compared to flight tests using a replica of the device. Trajectory results highlight the importance of mean wind velocity and direction and correct estimation of launching height and speed to accurately predict the point of impact. The flight tests validated the used trajectory prediction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Mansoor, S., Farooq, I., Kachroo, M., Mahmoud, A.E.D., Fawzy, M., Popescu, S., Alyemeni, M., Sonne, C., Rinklebe, J., Ahmad, P.: Elevation in wildfire frequencies with respect to the climate change. J. Environ. Manag. (2022). https://doi.org/10.1016/j.jenvman.2021.113769

    Article  Google Scholar 

  2. Vilar, L., Herrera, S., Tafur-García, E., Yebra, M., Martínez-Vega, J., Echavarría, P., Martín, M.P.: Modelling wildfire occurrence at regional scale from land use/cover and climate change scenarios. Environ. Model. Softw. (2021). https://doi.org/10.1016/j.envsoft.2021.105200

    Article  Google Scholar 

  3. Marques, S., Borges, J.G., Garcia-Gonzalo, J., Moreira, F., Carreiras, J.M.B., Oliveira, M.M., Cantarinha, A., Botequim, B., Pereira, J.M.C.: Characterization of wildfires in Portugal. Eur. J. For. Res. 130(5), 775–784 (2011). https://doi.org/10.1007/s10342-010-0470-4

    Article  Google Scholar 

  4. Carvalho, A., Flannigan, M., Logan, K., Gowman, L., Miranda, A., Borrego, C.: The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change. Clim. Change (2009). https://doi.org/10.1007/s10584-009-9667-2

    Article  Google Scholar 

  5. Costa, L., Thonicke, K., Poulter, B., Badeck, F.: Sensitivity of Portuguese forest fires to climatic, human, and landscape variables: subnational differences between fire drivers in extreme fire years and decadal averages. Reg. Environ. Change 11(3), 543–551 (2011). https://doi.org/10.1007/s10113-010-0169-6

    Article  Google Scholar 

  6. Borunda, A.: How fires in Europe are fueled by climate change. National Geographic. https://www.nationalgeographic.com/environment/2018/07/are-fires-in-europe-the-result-of-climate-change-/. (2018). Accessed 4 Nov 2022

  7. Green, M.: How fires in Europe are fueled by climate change. Reuters. https://www.reuters.com/article/us-climate-change-australia-report/australias-massive-fires-could-become-routine-climate-scientists-warn-idUSKBN1ZD06W (2020). Accessed 4 Nov 2022

  8. IPMA admite que é cada vez mais difícil prever risco de incêndio. PÚBLICO. https://www.publico.pt/2019/03/27/sociedade/noticia/chuva-calor-risco-incendio-imprevisivel-1866946 (2019). Accessed 4 Nov 2022

  9. Firefighting drones infographic. Dronefly. https://www.dronefly.com/firefighting-drones-drones-in-the-field-infographic (2018). Accessed 4 Nov 2022

  10. Aydin, B., Selvi, E., Tao, J., Starek, M.: Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting. Drones (2019). https://doi.org/10.3390/drones3010017

    Article  Google Scholar 

  11. Barua, S., Tanjim, M., Oishi, A., Das, S., Basar, A., Rafi, S.: Design and implementation of fire extinguishing ball thrower quadcopter. Paper presented at the IEEE Region 10 Symposium, Dhaka, Bangladesh, 05–07 June 2020 (2020)

  12. Swapna, P., Aiswarya, T., Arun, S., Aravinthan, V., Karthikeyan, S.: Advanced Co\(_2\) ball equipped fire extinguishing unmanned aerial vehicle. Paper presented at the International Conference on Inventive Computation Technologies, Nepal, 16 August 2022 (2022)

  13. Almeida, L.: Stress analysis and design of a 155 mm projectile shell to be used in fire fighting. Master’s Dissertation, University of Lisbon, Portugal (2016)

  14. Mihailescu, C., Radulescu, M., Coman, F.: The analysis of dispersion for trajectories of fire-extinguishing rocket. In: 9th IASME/WSEAS International Conference on Fluid Mechanics & Aerodynamics (FMA 11), Florence, Italy, 23–25 August 2011 (2011)

  15. Tian, X., Meng, C., Ma, J., Ma, B., Wang, Y., Chen, W.: Research on structure and fire control system of fire fighting uav based on polymer gel fire bomb. Paper presented at the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022 10, pp. 842–845 (2022). https://doi.org/10.1109/ITAIC54216.2022.9836575

  16. Soliman, A., Cagan, S., Buldum, B.: The design of a rotary-wing unmanned aerial vehicles-payload drop mechanism for fire-fighting services using fire-extinguishing balls. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-1322-6

    Article  Google Scholar 

  17. Alshbatat, A.: Fire extinguishing system for high-rise buildings and rugged mountainous terrains utilizing quadrotor unmanned aerial vehicle. Int. J. Image Graph. Signal Process. 10(1), 23–29 (2018). https://doi.org/10.5815/ijigsp.2018.01.03

    Article  Google Scholar 

  18. Zadeh, N., Abdulwakil, A., Amar, M., Durante, B., Santos, C.: Fire-fighting UAV with shooting mechanism of fire extinguishing ball for smart city. Indones. J. Electr. Eng. Comput. Sci. 22(3), 1320–1326 (2021). https://doi.org/10.11591/ijeecs.v22.i3.pp1320-1326

    Article  Google Scholar 

  19. Zeng, Z., Fu, R.: Research on adaptive control approach of firefighting UAVs with fire-extinguishing bombs. Paper presented at the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022, pp. 3722–3726 (2022). https://doi.org/10.1109/CAC57257.2022.10055460

  20. Alsammak, I., Mahmoud, M., Gunasekaran, S., Ahmed, A., Alkilabi, M.: Nature-inspired drone swarming for wildfires suppression considering distributed fire spots and energy consumption. IEEE Access 11, 50962–50983 (2023). https://doi.org/10.1109/ACCESS.2023.3279416

    Article  Google Scholar 

  21. Sokol, V.S.M.Z.I.: Forest fire fighting using heterogeneous ensemble of unmanned aerial vehicles. Paper presented at the 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), Kiev, Ukraine, 22–24 October 2019, pp. 218–223 (2022). https://doi.org/10.1109/APUAVD47061.2019.8943826

  22. Etkin, B.: Dynamics of Atmospheric Flight. Dover Publications, Mineola (2000)

    Google Scholar 

  23. McCoy, R.: Modern Exterior Ballistics. Schiffer Publishing, Atglen (1999)

    Google Scholar 

  24. Atallah, A., El-Sheikh, G., Mohamedy, A., Hafez, A.: Modeling and simulation for free fall bomb dynamics in windy environment. Paper presented at the 16th International Conference on Aerospace Sciences and Aviation Technology, Cairo, Egypt, 26–28 May 2015 (2015)

  25. Zipfel, P.: Modeling and Simulation of Aerospace Vehicle Dynamics. AIAA, Boston (2007)

    Book  Google Scholar 

  26. Mathworks, Inc.: MATLAB Simulink, R2015a 8.5. (2015)

  27. Generate continuous wind turbulence with Dryden velocity spectra - Simulink. Mathworks. https://www.mathworks.com/help/aeroblks/drydenwindturbulencemodelcontinuous.html (2019). Accessed 4 Nov 2022

  28. McRuer, D., Ashkenas, I., Graham, D.: Technical Report No 129-1—Aircraft Dynamics and Automatic Control. Naval Air Systems Command, U.S. Navy, California, USA (1968)

  29. Stevens, B., Lewis, F., Johnson, E.: Aircraft Control and Simulation - Dynamics, Controls Design, and Autonomous Systems. Wiley, New Jersey (2016)

    Google Scholar 

  30. Holbit, F.: Gust Loads on Aircraft: Concepts and Applications - AIAA Education Series. AIAA, Ohio (1988)

    Google Scholar 

  31. Ansys, Inc.: ANSYS 18.1. (2017)

  32. Ansys, Inc.: ANSYS Fluent User’s Guide, Release 18.2. (2017)

  33. International Organization for Standardization: Standard Atmosphere. ISO 2533, 1975 (1975)

  34. Menter, F.: Two-equation eddy-viscosity turbulence models for engineering applications. IAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  35. Hart, J.: Comparison of turbulence modeling approaches to the simulation of a dimpled sphere. Procedia Eng. 147, 68–73 (2016). https://doi.org/10.1016/j.proeng.2016.06.191

    Article  Google Scholar 

  36. de Briey, V., Marinus, B., Pirlot, M.: Aerodynamic characterization of a non-lethal finned projectile at low subsonic velocity. Paper presented at the AIAA Aviation 2019 Forum, Texas, USA, 17–21 June 2019 (2019)

  37. Grillo, C., Montano, F.: An extended Kalman filter-based technique for on-line identification of unmanned aerial system parameters. J. Aerosp. Technol. Manag. 7, 323–333 (2015). https://doi.org/10.5028/jatm.v7i3.412

    Article  Google Scholar 

  38. Adams, G., Dugan, D.: Report No 1088 - Theoretical Damping in Roll and Rolling Moment Due to Differential Wing Incidence for Slender Cruciform Wings and Wing-body Combinations. National Advisory Committee for Aeronautics, Moffett Field, California, USA (1952)

  39. Eades, J., Powers, C.: Aerodynamics Research Report 191 - Static and Dynamic Stability Studies on Several Lazy Dog Configurations at Subsonic and Transonic Speeds (NOLTR 63-47). U.S. Naval Ordenance Laboratory, White Oak, Maryland, USA (1964)

  40. CISR: Iraq Ordnance Identification Guide - Bombs. James Madison University, Harrisonburg, Virginia (2004)

    Google Scholar 

  41. Callens, S., Zadpoor, A.: From flat sheets to curved geometries: Origami and Kirigami approaches. Mater. Today 21, 241–264 (2018). https://doi.org/10.1016/j.mattod.2017.10.004

    Article  Google Scholar 

  42. Hoerner, S.: Fluid Dynamics Drag. Sighard Hoerner, Bakersfield (1992)

    Google Scholar 

  43. Deshpande, R., Desai, A., Kanti, V., Mittal, S.: Experimental investigation of boundary layer transition in flow past a bluff body. J. Phys. Conf. Ser. (2017). https://doi.org/10.1088/1742-6596/822/1/012003

    Article  Google Scholar 

  44. Jones, D., Clarke, D.: Simulation of Flow Past a Sphere Using the Fluent Code. Defence Science and Technology Organisation Document Control Data, Victoria (2008)

    Google Scholar 

  45. Manzanares-Bercial, R., Gómez-Ortega, O., Meseguer-Garrido, F., Ogueta-Gutiérrez, M., Franchini, S.: Unsteady aerodynamic lateral force on a sphere under a uniform incoming flow. J. Wind Eng. Ind. Aerodyn. (2022). https://doi.org/10.1016/j.jweia.2022.105205

    Article  Google Scholar 

  46. Li, J., Tsubokura, M., Tsunoda, M.: Numerical investigation of the flow around a golf ball at around the critical Reynolds number and its comparison with a smooth sphere. Flow Turbul. Combust. 95, 415–436 (2015). https://doi.org/10.1007/s10494-015-9630-4

    Article  Google Scholar 

  47. Seifert, J.: A review of the magnus effect in aeronautics. Prog. Aerosp. Sci. 55, 17–45 (2012). https://doi.org/10.1016/j.paerosci.2012.07.001

    Article  Google Scholar 

  48. Dassault Systèmes: CATIA v6. (2011)

  49. Solids - Densities. Engineering Toolbox. https://www.engineeringtoolbox.com/density-solids-d_1265.htmll (2009). Accessed 4 Nov 2022

  50. Deperrois, A.: XFLR5 v6.47 (2019)

  51. Rocha, H.: Trajectory and aerodynamic analyses of air launched fire-extinguishing projectiles. Master’s Dissertation, University of Beira Interior, Portugal (2020)

  52. Lewis, T.: Flight data analysis and simulation of wind effects during aerial refueling. Master’s Dissertation, University of Texas at Arlington (2008)

  53. Saghafi, F., Khalilidelshad, M.: A Monte Carlo dispersion analysis of a rocket flight simulation software. In: 17th European Simulation Multiconference, Nottingham, United Kingdom, 9–11 June 2003 (2003)

  54. Trzun, Z., Vrdoljak, M.: Monte Carlo simulation of missile trajectories dispersion due to imperfectly manufactured warhead. Paper presented at the 31st International DAAAM Symposium 2020, Vienna, Austria, 21–24th October 2020, pp. 574–583 (2020). https://doi.org/10.2507/31st.daaam.proceedings.079

  55. Glebocki, R., Jacewicz, M.: Parametric study of guidance of a 160-mm projectile steered with lateral thrusters. Aerospace (2020). https://doi.org/10.3390/aerospace7050061

    Article  Google Scholar 

  56. Sun, X., Gao, M., Zhou, X., Lv, J., Tian, F., Qiao, Z.: Guidance simulation and experimental verification of trajectory correction mortar projectile. IEEE Access 9, 15609–15622 (2021). https://doi.org/10.1109/ACCESS.2021.3052883

    Article  Google Scholar 

  57. Webb, D.: Report No ARL-MR-830 - Circular Probable Error for Circular and Noncircular Gaussian Impacts. U.S. Army Research Laboratory, Maryland, USA (2012)

  58. meteo|Técnico. https://meteo.tecnico.ulisboa.pt (2020). Accessed 22 June 2021

  59. Campos, T.: Desenvolvimento de um sistema de lançamento de projéteis extintores de incêndio a partir de UAVs. Master’s Dissertation, University of Beira Interior, Portugal (2021)

Download references

Funding

This research was funded by the Portuguese Foundation for Science and Technology, I.P. (FCT, I.P.) FCT/MCTES through national funds (PIDDAC), under the R&D Unit C-MAST/Center for Mechanical and Aerospace Science and Technologies, reference: Projects UIDB/00151/2020 (https://doi.org/10.54499/UIDB/00151/2020) and UIDP/00151/2020 (https://doi.org/10.54499/UIDP/00151/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Rocha.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, H., Campos, T. & Gamboa, P. Design and analysis of air launched fire-extinguishing devices. CEAS Aeronaut J (2024). https://doi.org/10.1007/s13272-024-00735-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13272-024-00735-9

Keywords

Navigation