Skip to main content

Advertisement

Log in

Flapping wing energy harvesting: aerodynamic aspects

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Aerodynamic forces on flapping wings create forward thrust. Natural flyers like birds and insects apply these forces effectively. Extensive studies have shown that the efficiency of flapping wings can be improved by various means. Of importance is the development and control of leading edge vortices (LEV’s). Thrust production means that energy is transferred from the flapping system into the fluid. In a similar way it can be achieved that energy flows from the fluid into the flapping system, i.e. fluid energy may be harvested. Responsible for the direction of energy flow is the ratio of pitching amplitude versus amplitude of the induced incidence of the plunging motion. If this ratio is smaller than unity thrust energy is produced; if it is larger than unity energy is transferred into the flapping system. In the present paper, emphasis is placed on the detailed study of the aerodynamic effects and on some ideas of optimization of energy harvesting of a flapping system. It will be shown that similar to the thrust production mode also in the energy harvesting mode, the influence of LEV’s is of major concern. The control of these vortices by airfoil deformation is shown to be beneficial for optimizing the efficiency of energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a :

Speed of sound, m/s

c :

Airfoil chord, m

c P :

Power coefficient (time-dependant)

C P :

Mean power coefficient

c M :

Moment coefficient (time-dependant)

C M :

Mean pitching moment coefficient

c N :

Normal force coeff. (time-dependant)

C N :

Mean normal force coefficient

d :

Difference between the highest and lowest point reached by the airfoil, referred to chord

f :

Frequency of oscillation, Hz

f*:

Reduced frequency, fc/U

h :

Non-dimensional plunging amplitude referred to chord, h = z/c

Ma:

Mach number, Ma  =  U/a

P :

Mean value of section power per unit span, (Nm/s)/m

M :

Pitching moment about pitch axis per unit span, Nm/m

Re :

Reynolds number: Re = Uc/ν

t :

Time, s

T :

Non-dimensional time, T = tU/c

T p :

Non-dimensional time of an oscillation period Tp = 2π/ω*

T :

Normalized time, T = T/Tp

U :

Free-stream velocity, m/s

x, z :

Horizontal and vertical coordinate, m

xD, zD :

Location of rotation axis, referred to chord

xp, zp :

Location of flex-center, referred to chord

X, Z :

Horizontal and vertical section force per unit span, N/m

X :

Mean value of horizontal section force per unit span

Z :

Mean value of normal section force per unit span

θ :

Effective incidence, θ = θh + θp

θ h :

Incidence induced by plunging motion, θh = tan−1(vh/U), deg

θ p :

Incidence of pitching motion, deg

V h :

Non-dimensional plunging velocity, Vh = * sin (ω*T)

V θ :

Non-dimensional pitching velocity, Vθ = θp0ω* sin (ω*T +Φ)

η :

Efficiency: η = P/(1/2ρU3d)

ν :

Kinematic viscosity, m2/s

ρ :

Density, kg/m3

Φ :

Phase shift between pitch and plunge

ψ :

Nose droop angle

Δψ :

Amplitude of nose-droop angle

ω :

Rotational frequency of airfoil oscillation, ω = 2 π f, rad/s

ω*:

Rotational frequency of airfoil oscillation, ω* = ωc/U = 2πf

References

  1. Küssner, H.G.: Schwingungen von Flugzeugflügeln (oscillation of aircraft wings). Jb. Deutsche Versuchsanstalt für Luftfahrt, p. 313 (1929)

  2. Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. NACA report Nr. 496 (1935)

  3. Xiao, Qing, Zhu, Qiang: A review on flow energy harvesters based on flapping foils. J. Fluids Struct. 46, 174–191 (2014)

    Article  Google Scholar 

  4. Jones, K.D., Platzer, M.F.: Numerical computation of flapping-wing propulsion and power extraction. AIAA Paper No. 97-0826, 1997

  5. Geissler, W., Dietz, G., Mai, H., Bosbach, H., Richard, H.: Dynamic stall and its passive control investigation on the OA209 airfoil section. In: 31st European Rotorcraft Forum, Florence, Italy, 13–16 Sep 2005

  6. Geissler, W., van der Wall, B.G.: Dynamic stall control on flapping wing airfoils. Aerosp. Sci. Technol. 62, 1–10 (2017)

    Article  Google Scholar 

  7. Liu, W., Xiao, Q., Cheng, F.: A bio-inspired study on tidal energy extraction with flexible flapping wings. Bioinspir. Biomim. 8, 1–16 (2013)

    Google Scholar 

  8. Spalart, P.R., Allmaras, S.R.: A one equation turbulence model for aerodynamic flows. AIAA-paper No. 92-0439, Jan 1992

  9. Kinsey, T., Dumas, G.: Optimal operating parameters for an oscillating foil turbine at Reynolds number 500,000. AIAA J. 52(9), 1885–1895 (2014)

    Article  Google Scholar 

  10. Campobasso, M.S., Piskopakis, A., Drofelnik, J., Jackson, A.: Turbulent Navier-Stokes analysis of an oscillating wing in a power-extraction regime using the shear stress transport turbulent model. Comput. Fluids 88, 136–155 (2013)

    Article  MathSciNet  Google Scholar 

  11. Karakas, F., Zaloglu, B., Fenercioglu, I., Hoke, C., Young, J., Lai, J.C.S., Platzer, M.F.: On optimal oscillating-foil power generation in free and constrained flow. In: AIAA Sci Tech Forum, 4–8 January 2016, San Diego, California, USA, 54th AIAA Aerospace Sciences Meeting

  12. Betz, A.: Das Maximum der Theoretisch Möglichen Ausnützung des Windes Durch Windmotoren. Z. Gesamte Turbinenwesen 26, 307–309 (1920)

    Google Scholar 

  13. Geißler, W.: Instationäres Navier-Stokes Verfahren für beschleunigt bewegte Profile mit Ablösung (Unsteady Navier-Stokes Code for accelerated airfoils with separation), DLR-FB 92-03. DLR, Göttingen, Germany (1992)

    Google Scholar 

  14. Beam, R.M., Warming, R.F.: An implicit factored scheme for the compressible Navier–Stokes equations. AIAA J. 16(4), 393–402 (1978)

    Article  Google Scholar 

  15. Kinsey, T., Dumas, G.: Parametric study of an oscillating airfoil in a power-extraction regime. AIAA J. 46(6), 1318–1330 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Geissler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geissler, W. Flapping wing energy harvesting: aerodynamic aspects. CEAS Aeronaut J 11, 379–389 (2020). https://doi.org/10.1007/s13272-019-00394-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-019-00394-1

Keywords

Navigation