Skip to main content
Log in

Methods and tools for the characterisation of a generic jet fuel

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The demand for producing environmentally friendly jet fuels raises the question how to design a jet fuel that matches predefined properties. Targets to be matched are, e.g., energy content or less harmful emission characteristics. A further major challenge for the production of new synthetic jet fuels is their availability for the required certification process in sufficient quantities within an appropriate time frame and at reasonable cost. This implies the need for tools for the formulation of synthetic jet fuels which have mostly a component pattern that differs from Jet A-1 made from crude-oil. In the present work, to address these challenges, a new approach will be presented to be able to design a synthetic jet fuel from scratch with preselected and well-defined physical and chemical properties. The development of a chemical kinetic reaction mechanism able to describe the oxidation of a generic fuel consisting of only a few representative components of the major molecule classes occurring in jet fuels. n-Dodecane, cyclohexane, and isooctane were chosen as single fuel components, and their global combustion properties, i.e., laminar burning velocity and ignition delay time, were measured. These experimental data were used for the validation of the reaction mechanisms, first developed for each single fuel component, and then combined to the reaction mechanism for the generic fuel under consideration. The last step is the further optimization and reduction of the generic fuel reaction mechanism to ensure its suitability for the integration in numerical simulation to tackle the combustion of a synthetic fuel under practical conditions, e.g., in CFD simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Braun-Unkhoff, M., Riedel, U., Wahl, C.: About the emissions of alternative jet fuels. CEAS Aeronaut. J. 8(l), 167–180 (2017)

    Article  Google Scholar 

  2. Braun-Unkhoff, M., Kathrotia, T., Rauch, B., Riedel, U.: About the interaction between composition and performance of alternative jet fuels. CEAS Aeronaut. J. 7(1), 83–94 (2016)

    Article  Google Scholar 

  3. InnoTreib: Innovative Treibstoffe der Zukunft, Project funded by Bundesministerium für Wirtschaft und Energie, Germany, 2014–2017

  4. Eberius, H., Kick, T.: Stabilization of premixed conical methane flames at high pressures. Ber. Bunsenges. Phys. Chem. 96(10), 1416–1419 (1992)

    Article  Google Scholar 

  5. Kick, T., Kathrotia, T., Braun-Unkhoff, M., Riedel, U.: An experimental and modeling study of laminar flame speeds of alternative aviation fuels. In: Proceedings of ASME Turbo Expo 2011, GT2011-45606 (2011)

  6. Kick, T., Herbst, J., Marquetand, J., Braun-Unkhoff, M., Naumann, C., Riedel, U.: An experimental and modeling study of burning velocities of possible future synthetic jet fuel. Energy 43(1), 111–123 (2012)

    Article  Google Scholar 

  7. Mzé-Ahmed, A., Dagaut, P., Hadj-Ali, K., Dayma, G., Kick, T., Herbst, J., Kathrotia, T., Braun-Unkhoff, M., Herzler, J., Naumann, C., Riedel, U.: Oxidation of a coal-to-liquid synthetic jet fuel: experimental and chemical kinetic modeling study. Energy Fuels 26(10), 6070–6079 (2012)

    Article  Google Scholar 

  8. Dagaut, P., Karsenty, F., Dayma, G., Diévart, P., Hadj-Ali, K., Mzé-Ahmed, A., Braun-Unkhoff, M., Herzler, J., Kathrotia, T., Kick, T., Naumann, C., Riedel, U., Thomas, L.: Experimental and detailed kinetic model for the oxidation of a gas to liquid (GtL) jet fuel. Combust. Flame 161, 835–847 (2014)

    Article  Google Scholar 

  9. Richter, S., Raida, M.B., Naumann, C., Riedel, U.: Measurement of the laminar burning velocity of neat jet fuel components. In: Proceedings of the World Congress on Momentum, Heat and Mass Transfer (MHMT’16), CSP 115 (2016)

  10. Richter, S., Naumann, C., Riedel, U.: Experimental study on the combustion properties of an alcohol-to-jet fuel. In: Proceedings of the 2nd World Congress on Momentum, Heat and Mass Transfer (MHMT’17), CSP 107 (2017)

  11. Richter, S., Kathrotia, T., Naumann, C., Kick, T., Slavinskaya, N., Braun-Unkhoff, M., Riedel, U.: Experimental and modeling study of farnesane. Fuel 215, 22–29 (2018)

    Article  Google Scholar 

  12. Kumar, K., Sung, C.J.: Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combust. Flame 151, 209–224 (2007)

    Article  Google Scholar 

  13. Kumar, K., Freeh, J.E., Sung, C.J., Huang, Y.: Laminar flame speeds of preheated iso-octane/O2/N2 and n-heptane/O2/N2 mixtures. J. Propul. Power 23(2), 428–436 (2007)

    Article  Google Scholar 

  14. Galmiche, B., Halter, F., Foucher, F.: Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein length of iso-octane/air mixtures. Combust. Flame 159, 3286–3299 (2012)

    Article  Google Scholar 

  15. Hui, X., Das, A.K., Kumar, K., Sung, C.-J., Dooley, S., Dryer, F.L.: Laminar flame speeds and extinction stretch rates of selected aromatic hydrocarbons. Fuel 97, 695–702 (2012)

    Article  Google Scholar 

  16. Kumar, K., Sung, C.J.: flame propagation and extinction characteristics of neat surrogate fuel components. Energy Fuels 24, 3840–3849 (2010)

    Article  Google Scholar 

  17. Biet, J., Hakka, M.H., Warth, V., Glaude, P.-A., Battin-Leclerc, F.: Experimental and modeling study of the low-temperature oxidation of large alkanes. Energy Fuels 22(4), 2258–2269 (2008)

    Article  Google Scholar 

  18. Fieweger, K., Blumenthal, R., Adomeit, G.: Shock-tube investigations on the self-ignition of hydrocarbon–air mixture at high pressures. In: 25th Symposium (International) an Combustion, pp. 1579–1585 (1994)

  19. Davidson, D.F., Gauthier, B.M., Hanson, R.K.: Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures. Proc. Combust. Inst. 30, 1175–1182 (2005)

    Article  Google Scholar 

  20. He, X., Donovan, M.T., Zigler, B.T., Palmer, T.R., Walton, S.M., Wooldridge, M.S., Atreya, A.: An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions. Combust. Flame 142, 266–275 (2005)

    Article  Google Scholar 

  21. Li, S., Campos, A., Davidson, D.F., Hanson, R.K.: Shock tube measurements of branched alkane ignition delay times. Fuel 118, 398–405 (2014)

    Article  Google Scholar 

  22. Sirjean, B., Buda, F., Hakka, H., Glaude, P.A., Fournet, R., Warth, V., Battin-Leclerc, F., Ruiz-Lopez, M.: The autoignition of cyclopentane and cyclohexane in a shock tube. Proc. Combust. Inst. 31, 277–284 (2007)

    Article  Google Scholar 

  23. Daley, S.M., Berkowitz, A.M., Oehlschlaeger, M.A.: A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures. Int. J. Chem. Kinet. 40(10), 624–634 (2008)

    Article  Google Scholar 

  24. Hong, Z., Lam, K.-L., Davidson, D.F., Hanson, R.K.: A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures. Combust. Flame 158, 1456–1468 (2011)

    Article  Google Scholar 

  25. Comandini, A., Dubois, T., Abid, S., Chaumeix, N.: Comparative study on cyclohexane and decalin oxidation. Energy Fuels 28, 714–724 (2014)

    Article  Google Scholar 

  26. Tian, Z., Zhang, Y., Yang, F., Pan, L., Jiang, X., Huang, Z.: Comparative Study of experimental and modeling autoignition of cyclohexane, ethylcyclohexane, and n-propylcyclohexane. Energy Fuels 28, 7159–7167 (2014)

    Article  Google Scholar 

  27. Goldsborough, S.S.: A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region. Combust. Flame 156, 1248–1262 (2009)

    Article  Google Scholar 

  28. Hartmann, M., Gushterova, I., Fikri, M., Schulz, C., Schießl, R., Maas, U.: Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: high-pressure shock-tube experiments and kinetics modeling. Combust. Flame 158, 172–178 (2011)

    Article  Google Scholar 

  29. Di, H., He, X., Zhang, P., Wang, Z., Wooldridge, M.S., Law, C.K., Wang, C., Shuai, S., Wang, J.: Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane. Combust. Flame 161, 2531–2538 (2014)

    Article  Google Scholar 

  30. Won, S.H., Haas, F.M., Tekawade, A., Kosiba, G., Oehlschlaeger, M.A., Dooley, S., Dryer, F.L.: Combustion characteristics of C4 iso-alkane oligomers: experimental characterization of iso-dodecane as a jet fuel surrogate component. Combust. Flame 165, 137–143 (2016)

    Article  Google Scholar 

  31. Vranckx, S., Lee, C., Chakravarty, H.K., Fernandes, R.X.: A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures. Proc. Combust. Inst. 34, 377–384 (2013)

    Article  Google Scholar 

  32. Edwards, T., Maurice, L.Q.: Surrogate mixtures to represent complex aviation and rocket fuels. J. Propuls. Power 17(2), 461–466 (2001)

    Article  Google Scholar 

  33. Kintech Laboratory: Chemical Workbench®. http://www.kintechlab.com/products/chemical-workbench/. Zugriff am 03. 12. 2018

  34. Methling, T., Braun-Unkhoff, M., Riedel, U.: A novel linear transformation model for the analysis and optimisation of chemical kinetics. Combust. Theory Model. 21(3), 503–528 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the Federal Ministry for Economic Affairs and Energy for funding InnoTreib and all project partners for an excellent collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Richter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, S., Braun-Unkhoff, M., Kathrotia, T. et al. Methods and tools for the characterisation of a generic jet fuel. CEAS Aeronaut J 10, 925–935 (2019). https://doi.org/10.1007/s13272-019-00364-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-019-00364-7

Keywords

Navigation