Skip to main content
Log in

High-fidelity rotorcraft simulation model: analyzing and improving linear operating point models

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The simulation of the helicopter motion is a central component in flight control design, handling quality studies, and the understanding of physical effects. At best, the flight test results fulfill the expectations from the simulation. Even though identification and simulation techniques for linear models were continuously developed in the past, the fidelity achieved with existing tools is still insufficient—based on the experience with the research rotorcraft EC135 ACT/FHS. This paper is about the improvement of the simulation fidelity for the bare and stabilized vehicle. A pragmatic procedure is presented that updates a given linear (physics-based) model by adding (not physics-based) models and systems. Methods used are inverse simulation, partial closed-loop analysis, and model stitching. The paper shows how to combine these methods in a certain framework so that the simulation fidelity is significantly improved. Comprehensible examples as well as data from the research rotorcraft ACT/FHS are documented to provide the reader with more insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Note that any measurement such as flight states, atmospheric states, etc. can be used to describe the tuned inputs. Reference [18] shows additional possible modeling approaches. For the application to ACT/FHS models and data, the input model as depicted in Fig. 2 is sufficient to improve the bare vehicle’s simulation fidelity (based on experience).

  2. Identified state-space models of the ACT/FHS—as documented in Ref. [5]—are all fully controllable and observable and the multiple input multiple output MIMO system only has left halfplane zeros.

  3. For ACT/FHS data, the low-pass filter has its \(3\hbox { dB}\) magnitude decrease at 50 rad/s.

  4. For flight tests with the ACT/FHS, multistep and doublet inputs are performed for different feedback configurations. Sweeps have not been applied as partial closed-loop control responses are validated for a plant model with good simulation fidelity for small control deflections. This means, an adaptation is expected for large control deflections and with little changes on the modeling structure. Multistep responses are used for validation. Doublet signals are used for modeling and for excitation of weakly damped oscillatory modes. In total, up to ten test signals with different feedback configurations have been recorded per control axis in five to ten minutes of flight time.

Abbreviations

ACT/FHS:

Active Control Technology / Flying Helicopter Simulator

\(\mathbf A _{\xi _{op}}, \mathbf B _{\xi _{op}}\) :

Identified matrices: dynamic, input,

\(\mathbf C _{\xi _{op}}, \mathbf D _{\xi _{op}}\) :

Output, and feedthrough (at \(\xi _{op}\))

\(\mathbf A _{a,\xi _{op}}, \mathbf B _{a,\xi _{op}}\) :

Additional matrices for parameter tuning

\(\mathbf A ', \mathbf B '\) :

Residual matrices

\(\mathbf A (\xi ), \mathbf B (\xi )\) :

Interpolated matrices

\(\mathbf f (\mathbf x ,\mathbf u )\) :

Nonlinear system vector

G :

Frequency response

\(\mathbf I\) :

Unity matrix

\(J_{{\text {G}}}\) :

Root mean square error of frequency response data

q :

Pitch rate (rad/s)

\(T_{\text {f}}\) :

Time constant, low-pass filter

u :

Forward speed (m/s)

\(\mathbf u\) :

Control vector

\(\mathbf x\) :

State vector

\(\mathbf x _s\) :

Simulated state vector as part of the inverse simulation

\(\mathbf y\) :

Output vector

\(\mathbf y _r\) :

References (filtered measurements)

\(\delta _x\) :

Longitudinal control (%)

\(\varvec{\varDelta }_m\) :

Input uncertainty

\(\varvec{\varDelta }_{m,s}\) :

Stochastic part of \(\varvec{\varDelta }_m\)

\(\varvec{\varDelta }_{m,d}\) :

Deterministic part of \(\varvec{\varDelta }_m\)

\(\theta\) :

Pitch attitude (rad)

\(\xi\) :

Interpolation variable, i.e., aerodynamic velocity

\(\omega\) :

Frequency (rad/s)

1:

First partition of a vector

2:

Second partition of a vector

f :

Filtered value

\(is\) :

Inverse simulated value

m :

Measured value

T :

Trim value

\(\xi _{op}\) :

Operating point (i.e., characterized by airspeed)

\(\varDelta \square\) :

Perturbed value “\(\square\)

\(\square ^{\text {T}}\) :

Transpose of the value “\(\square\)

\(\dot{\square }\) :

Derivative \(\partial \square /\partial t\)

References

  1. Hamel, P.: Fliegende Simulatoren und Technologieträger: Braunschweiger Luftfahrtforschung im internationen Umfeld, 1st edn. Appelhans, Braunschweig (2014)

    Google Scholar 

  2. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 11th edn. Pearson Education, Upper Saddle River (2008)

    MATH  Google Scholar 

  3. Tischler, M.B., Remple, R.K.: Aircraft and Rotorcraft System Identification: Engineering Methods with Flight Test Examples, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2012)

    Book  Google Scholar 

  4. Benoit, B., Dequin, A.M., Basset, P.M., Gimonet, B., von Grünhagen, W., Kampa, K.: HOST, a general helicopter simulation tool for Germany and France. In: American Helicopter Society 56th Annual Forum, Virginia Beach, Virginia, May 2–4 (2000)

  5. Seher-Weiss, S., von Grünhagen, W.: EC135 system identification for model following control and turbulence modeling. In: Proceedings of the 1st CEAS European Air and Space Conference, Berlin, pp. 2439–2447 (2007)

  6. Wartmann, J., Seher-Weiss, S.: Application of the predictor-based subspace identification method to rotorcraft system identification. In: 39th European Rotorcraft Forum, Moscow, Russia, September 3–6 (2013)

  7. Fletcher, J.W.: A Model Structure for Identification of Linear Models of the UH-60 Helicopter in Hover and Forward Flight: NASA Technical Memorandum 110362. NASA (National Aeronautics and Space Administration), Moffett Field (1995)

    Google Scholar 

  8. Zivan, L., Tischler, M.B.: Development of a full flight envelope helicopter simulation using system identification. J. Am. Helicopter Soc. 55 (2010)

  9. Ivler, C.M., Tischler, M.B.: Case studies of system identification modeling for flight control design. J. Am Helicopter Soc. 58(1), 1–16 (2013)

    Article  Google Scholar 

  10. Marcos, A., Balas, G.J.: Development of linear-parameter-varying models for aircraft. J. Guid. Control Dyn. 27(2) (2004)

  11. Righetti, A., Muscarello, V., Quaranta, G.: linear parameter varying models for the optimization of tiltrotor conversion maneuver. In: American Helicopter Society 73rd Annual Forum, Fort Worth, Texas, May 9–11 (2017)

  12. Tobias, E.L., Tischler, M.B., Berger, T., Hagerott, S.G.: Full flight-envelope simulation and piloted fidelity assessment of a business jet using a model stitching architecture. In: AIAA SciTech, Modeling and Simulation Technologies Conference, Kissimmee, FL, USA, January 5–9 (2015)

  13. Tobias, E.L., Tischler, M.B.: A model stitching architecture for continuous full flight-envelope simulation of fixed-wing aircraft and rotorcraft from discrete point linear models: special report RDMR-AF-16-01. U.S. Army Research, Development, and Engineering Command, Moffett Field (2016)

  14. Mueller, B.: Ein Beitrag zur Bestimmung der Fluggeschwindigkeit von Hubschraubern mit Zustandsbeobachtern. Braunschweig: DFVLR, Institut für Flugführung (1987)

  15. Greiser, S., Seher-Weiss, S.: A contribution to the development of a full flight envelope quasi-nonlinear helicopter simulation. CEAS Aeronaut J 5(1), 53–66 (2014)

    Article  Google Scholar 

  16. von Grünhagen, W.: Inverse simulation: a tool for the validation of simulation programs—first results. Zeitschrift für Flugwissenschaften und Weltraumforschung 17, 211–219 (1993)

    Google Scholar 

  17. Murray-Smith, D.J., Wong, B.O.: Inverse simulation techniques applied to the external validation of nonlinear dynamic models. In: Third Conference of the United Kingdom Simulation Society, Edinburgh, UK, pp. 100–104, April (1997)

  18. Greiser, S., von Grünhagen, W.: Analysis of model uncertainties using inverse simulation. In: American Helicopter Society 69th Annual Forum, Phoenix, AZ, May 21–23 (2013)

  19. Hamers, M., von Grünhagen, W.: Nonlinear helicopter model validation applied to realtime simulations. Forum of the American Helicopter Society (1997)

  20. von Grünhagen, W.: Modellierung und Simulation von Hubschraubern Mathematische Beschreibung: IB 111–1988/06. DLR, Braunschweig (1988)

  21. Greiser, S.: Disturbance observer-based control to suppress air resonance for the EC135 ACT/FHS Research helicopter. In: AIAA SciTech, Modeling and Simulation Technologies Conference, Kissimmee, FL, USA, January 5–9 (2015)

  22. Hamers, M., Lantzsch, R., Wolfram, J.: First control evaluation of research helicopter FHS. In: 33rd European Rotorcraft Forum, Kazaan, Russia, September 11–13 (2007)

  23. Lantzsch, R., Wolfram, J., Hamers, M.: Increasing handling qualities and flight control performance using an air resonance controller. In: American Helicopter Society 64th Annual Forum, Montréal, Canada, April 29–May 1 (2008)

  24. Gray, G.J., von Grünhagen, W.: An investigation of open-loop and inverse simulation as nonlinear model validation tools for helicopter flight mechanics. Math. Comput. Model. Dyn. Syst. 4(1), 32–57 (1998)

    Article  MATH  Google Scholar 

  25. Krämer, P.: Hybridmodellierung und Systemidentifizierung der nichtlinearen Hubschrauber-Flugdynamík. Braunschweig: DLR, Institut für Flugsystemtechnik (2006)

  26. Fujizawa, B.T., Ivler, C.M., Tischler, M.B., Moralez III, E., Braddom, S.R.: In-flight simulation control law design and validation for RASCAL. In: American Helicopter Society 66th Annual Forum, Phoenix, AZ, May 11–13 (2010)

  27. Rynaski, E.G.: Adaptive multivariable model following. In: Joint Automatic Control Conference, San Francisco, CA, August 13–15 (1980)

  28. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. Wiley, Chichester (2005)

    MATH  Google Scholar 

  29. Lusardi, J.A.: Control Equivalent Turbulence Input Model for the UH-60 Helicopter: Dissertation. Davis, CA: University of California (2004)

  30. Seher-Weiss, S.: FitlabGui—a versatile tool for data analysis, system identification and helicopter handling qualities analysis. In: 42nd European Rotorcraft Forum, Lille, France, September 5–9 (2016)

  31. Seher-Weiss, S., von Grünhagen, W.: Comparing explicit and implicit modeling of rotor flapping dynamics for the EC135. In: Deutscher Luft- und Raumfahrtkongress, Berlin, September 10–12 (2012)

  32. Kaletka, J., Kurscheid, H., Butter, U.: FHS, the new research helicopter: ready for service. Aerosp. Sci. Technol. 9(5), 456–467 (2005)

    Article  MATH  Google Scholar 

  33. Greiser, S., Lantzsch, R., Wolfram, J., Wartmann, J., Müllhäuser, M., Lüken, T., Döhler, H.U., Peinecke, N.: Results of the pilot assistance system ”assisted low-level flight and landing on unprepared landing sites” obtained with the ACT/FHS research rotorcraft. Aerosp. Sci. Technol. 45, 215–227 (2015)

    Article  Google Scholar 

  34. Greiser, S., von Grünhagen, W.: Improving system identification results: combining a physics-based stitched model with transfer function models obtained through inverse simulation. In: American Helicopter Society 72nd Annual Forum, West Palm Beach, FL, May 17–19 (2016)

  35. Greiser, S.: Erhöhung der Simulationsgüte linearer Arbeitspunktmodelle für den Entwuf von Hubschrauberregelungen: Forschungsbericht 2016-72. Braunschweig: DLR, Institut für Flugsystemtechnik (2016)

  36. Lantzsch, R., Hamers, M., Wolfram, J.: Flight control and handling qualities evaluations considering air resonance. J. Am. Helicopter Soc. 59(2), 1–11 (2014)

    Article  Google Scholar 

  37. Greiser, S., Lantzsch, R.: Equivalent modelling and suppression of air resonance for the ACT/FHS in flight. In: 39th European Rotorcraft Forum, Moscow, Russia, September 3–6 (2013)

  38. Jones, P.J., Russell, D.D., McGuire, D.P.: Latest developments in fluidlastic lead-lag dampers for vibration control in helicopters. In: American Helicopter Society 59th Annual Forum, Phoenix, Arizona, May 6–8 (2003)

  39. Seher-Weiss, S.: ACT/FHS system identification including rotor and engine dynamics. In: American Helicopter Society 73rd Annual Forum, Fort Worth, Texas, May 9–11 (2017)

  40. Seher-Weiss, S.: First attempts to account for flexible modes in ACT/FHS system identification. In: 43rd European Rotorcraft Forum, Milan, Italy, September 12–15 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Greiser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greiser, S. High-fidelity rotorcraft simulation model: analyzing and improving linear operating point models. CEAS Aeronaut J 10, 687–702 (2019). https://doi.org/10.1007/s13272-018-0345-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-018-0345-9

Keywords

Navigation