Skip to main content
Log in

Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

In this study, the buckling and free vibration behavior of tapered functionally graded material (FGM) sandwich columns is explored. The connections are considered to be semi-rigid. The core material is functionally graded along the beam depth according to the simple power law form. Euler–Bernoulli beam theory and the Ritz method will be employed to derive the governing equations. Legendre polynomials are chosen as auxiliary functions. After reducing the order of Euler’s buckling equation, an Emden–Fowler differential equation will be obtained. To reach a closed-form solution, the flexural rigidity of the column will be approximated with an exponential function by enforcing least-squares method. Non-dimensional natural frequencies and critical buckling loads will be presented for various cross-sectional types. The effects of FGM power, taper ratio, and spring rigidities on the critical buckling loads, and natural frequencies will be also investigated. Numerical results for various boundary conditions and configurations reveal the high accuracy of authors’ scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

E :

Modulus of elasticity

\(\rho\) :

Density

\({V_{\text{m}}}\) :

Volume fraction of metal phase

\(h\) :

Height of the core

\({h_{\text{f}}}\) :

Thickness of the facings

p :

FGM power

\(\Omega\) :

Taper parameter

\(\lambda\) :

Taper ratio

u :

Longitudinal displacement

w :

Transverse displacement

\({C_{\text{t}}}\) :

Transitional spring rigidity factor

\({C_{\text{r}}}\) :

Rotational spring rigidity factor

\(\overline {\omega }\) :

Normalized natural frequency

\({Q^{\text{i}}}\) :

Constitutive coefficient

\(\nu\) :

Poisson’s ratio

\({\varepsilon ^*}\) :

Fitness error

\(\alpha ,\beta\) :

Constants of the exponential flexural rigidity function

J, Y :

Bessel functions of second order

\(\mu\) :

Normalized buckling parameter

L :

Length of the column

\(\dot {u},\dot {w}\) :

Velocity

C :

Integration constants

A :

Cross-sectional area

\(\xi\) :

Rotational spring rigidity ratio

\(\psi\) :

Transitional spring rigidity

\(\eta\) :

Flexural rigidity coefficient

\({\overline {P} _{Cr}}\) :

Normalized critical buckling load

H :

Total height of the cross section at \(x=0\)

g :

Shape function

\({L_{\text{j}}}\) :

Legendre polynomial

K :

Stiffness matrix

M :

Mass matrix

\({U_{{\text{int}}}}\) :

Strain energy

V :

External energy

\({K_{\text{e}}}\) :

Kinetic energy

\(\Pi\) :

Total potential energy

\(I\) :

Moment of inertia

P :

Compressive load

\({P_{{\text{Cr}}}}\) :

Critical buckling load

\(\omega\) :

Natural frequency

\(\sigma\) :

Axial stress

\(\varepsilon\) :

Axial strain

t :

Time

\(\gamma\) :

Shear strain

References

  1. Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61(5), 689–696 (2001). https://doi.org/10.1016/S0266-3538(01)00007-0

    Article  Google Scholar 

  2. Carlsson, L.A., Kardomateas, G.A.: Structural and Failure Mechanics of Sandwich Composites. Springer, Dordrecht, New York (2011)

    Book  Google Scholar 

  3. Bradford, M.A., Yazdi, N.A.: A Newmark-based method for the stability of columns. Comput. Struct. 71(6), 689–700 (1999). https://doi.org/10.1016/S0045-7949(98)00219-3

    Article  Google Scholar 

  4. Markworth, A.J., Ramesh, K.S., Parks, W.P.: Modelling studies applied to functionally graded materials. J. Mater. Sci. 30(9), 2183–2193 (1995). https://doi.org/10.1007/bf01184560

    Article  Google Scholar 

  5. Mortensen, A., Suresh, S.: Functionally graded metals and metal-ceramic composites: part 1 processing. Int. Mater. Rev. 40(6), 239–265 (1995). https://doi.org/10.1179/imr.1995.40.6.239

    Article  Google Scholar 

  6. Suresh, S., Mortensen, A.: Functionally graded metals and metal-ceramic composites: part 2 thermomechanical behaviour. Int. Mater. Rev. 42(3), 85–116 (1997). https://doi.org/10.1179/imr.1997.42.3.85

    Article  Google Scholar 

  7. Birman, V.: Modeling and analysis of functionally graded materials and structures. In: Hetnarski, R.B. (ed.) Encyclopedia of Thermal Stresses, pp. 3104–3112. Springer Netherlands, Dordrecht (2014). https://doi.org/10.1007/978-94-007-2739-7_574

    Chapter  Google Scholar 

  8. Shukla, A., Jain, N., Chona, R.: A review of dynamic fracture studies in functionally graded materials. Strain. 43(2), 76–95 (2007). https://doi.org/10.1111/j.1475-1305.2007.00323.x

    Article  Google Scholar 

  9. Kolakowski, Z., Teter, A.: Static interactive buckling of functionally graded columns with closed cross-sections subjected to axial compression. Compos. Struct. 123(Supplement C), 257–262 (2015). https://doi.org/10.1016/j.compstruct.2014.12.051

    Article  Google Scholar 

  10. Darilmaz, K., Aksoylu, M.G., Durgun, Y.: Buckling analysis of functionally graded material grid systems. Struct. Eng. Mech. 54(5), 877–890 (2015)

    Article  Google Scholar 

  11. Kolakowski, Z., Teter, A.: Interactive buckling of FGM columns under compression. Stability of structures XIVth symposium Zakopane, Zakopane, pp 49–50 (2015)

  12. Darbandi, S.M., Firouz-Abadi, R.D., Haddadpour, H.: Buckling of variable section columns under axial loading. J. Eng. Mech. 136(4), 472–476 (2010). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000096

    Article  Google Scholar 

  13. Šapalas, V., Samofalov, M., Šaraškinas, V.: Fem stability analysis of tapered beam-columns. J. Civil Eng. Manag. 11(3), 211–216 (2005). https://doi.org/10.1080/13923730.2005.9636352

    Article  Google Scholar 

  14. Shooshtari, A., Khajavi, R.: An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler–Bernoulli and Timoshenko beam elements. Eur. J. Mech. A Solids. 29(5), 826–836 (2010). https://doi.org/10.1016/j.euromechsol.2010.04.003

    Article  Google Scholar 

  15. Léotoing, L., Drapier, S., Vautrin, A.: First applications of a novel unified model for global and local buckling of sandwich columns. Eur. J. Mech. A Solids. 21(4), 683–701 (2002). https://doi.org/10.1016/S0997-7538(02)01229-9

    Article  MATH  Google Scholar 

  16. Frostig, Y., Baruch, M.: High-order buckling analysis of sandwich beams with transversely flexible core. J. Eng. Mech. 119(3), 476–495 (1993). https://doi.org/10.1061/(ASCE)0733-9399(1993)119:3(476)

    Article  Google Scholar 

  17. Allen, H.D.: Chapter 5 - Bending and Buckling of Isotropic Sandwich Panels with Very Thin Identical Faces (Ritz Method). In: Analysis and Design of Structural Sandwich Panels, pp. 76–98. Pergamon (1969). https://doi.org/10.1016/B978-0-08-012870-2.50009-2

    Chapter  Google Scholar 

  18. Ji, W., Waas, A.M.: Global and local buckling of a sandwich beam. J. Eng. Mech. 133(2), 230–237 (2007) https://doi.org/10.1061/(ASCE)0733-9399(2007)133:2(230)

    Article  Google Scholar 

  19. Fleck, N.A., Sridhar, I.: End compression of sandwich columns. Compos. Part A Appl. Sci. Manuf. 33(3), 353–359 (2002). https://doi.org/10.1016/S1359-835X(01)00118-X

    Article  Google Scholar 

  20. Huang, H., Kardomateas, G.A.: Buckling and initial postbuckling behavior of sandwich beams including transverse shear. AIAA J. 40(11), 2331–2335 (2002). https://doi.org/10.2514/2.1571

    Article  Google Scholar 

  21. Yu, Y., Sun, Y., Zang, L.: Analytical solution for initial postbuckling deformation of the sandwich beams including transverse shear. J. Eng. Mech. 139(8), 1084–1090 (2013). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000469

    Article  Google Scholar 

  22. Douville, M.-A., Le Grognec, P.: Exact analytical solutions for the local and global buckling of sandwich beam-columns under various loadings. Int. J. Solids Struct. 50(16–17), 2597–2609 (2013). https://doi.org/10.1016/j.ijsolstr.2013.04.013

    Article  Google Scholar 

  23. Rezaiee-Pajand, M., Shahabian, F., Tavakoli, F.H.: Delamination detection in laminated composite beams using hybrid elements. Compos. Struct. 94(9), 2777–2792 (2012). https://doi.org/10.1016/j.compstruct.2012.04.014

    Article  Google Scholar 

  24. Yiatros, S., Wadee, M.A., Völlmecke, C.: Modeling of interactive buckling in sandwich struts with functionally graded cores. J. Eng. Mech. 139(8), 952–960 (2013). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000470

    Article  Google Scholar 

  25. Huang, Y., Li, X.-F.: Buckling analysis of nonuniform and axially graded columns with varying flexural rigidity. J. Eng. Mech. 137(1), 73–81 (2011). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000206

    Article  Google Scholar 

  26. Rezaiee-Pajand, M., Masoodi, A.R.: Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections. J. Vib. Control. 24(9), 1787–1808 (2018). https://doi.org/10.1177/1077546316668932

    Article  Google Scholar 

  27. Huang, Y., Zhang, M., Rong, H.: Buckling analysis of axially functionally graded and non-uniform beams based on Timoshenko Theory. Acta Mech. Solida Sin. 29(2), 200–207 (2016). https://doi.org/10.1016/S0894-9166(16)30108-2

    Article  Google Scholar 

  28. Rajasekaran, S.: Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach. Meccanica. 48(5), 1053–1070 (2013). https://doi.org/10.1007/s11012-012-9651-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Ávila, A.F.: Failure mode investigation of sandwich beams with functionally graded core. Compos. Struct. 81(3), 323–330 (2007). https://doi.org/10.1016/j.compstruct.2006.08.030

    Article  Google Scholar 

  30. Rezaiee-Pajand, M., Shahabian, F., Tavakoli, F.H.: (2014) Delamination detection in buckling laminated composite plates. Proc. Inst. Civil Eng. Eng. Comput. Mech. 167(2), 67–81. https://doi.org/10.1680/eacm.13.00020

    Article  Google Scholar 

  31. Singh, K.V., Li, G.: Buckling of functionally graded and elastically restrained non-uniform columns. Compos Part B Eng. 40(5), 393–403 (2009). https://doi.org/10.1016/j.compositesb.2009.03.001

    Article  Google Scholar 

  32. Osofero, A.I., Vo, T.P., Nguyen, T.-K., Lee, J.: Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories. J. Sandwich Struct. Mater (2015). https://doi.org/10.1177/1099636215582217

    Article  Google Scholar 

  33. Khalili, S.M.R., Damanpack, A.R., Nemati, N., Malekzadeh, K.: Free vibration analysis of sandwich beam carrying sprung masses. Int. J. Mech. Sci. 52(12), 1620–1633 (2010). https://doi.org/10.1016/j.ijmecsci.2010.08.003

    Article  Google Scholar 

  34. Kubenko, V.D., Pleskachevskii, Y.M., Starovoitov, ÉI., Leonenko, D.V.: Natural vibration of a sandwich beam on an elastic foundation. Int. Appl. Mech. 42(5), 541–547 (2006). https://doi.org/10.1007/s10778-006-0118-8

    Article  Google Scholar 

  35. Nguyen, T.-K., Nguyen, B.-D.: (2015) A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. J. Sandwich Struct. Mater. https://doi.org/10.1177/1099636215589237

    Article  Google Scholar 

  36. Ying, J., Lü, C.F., Chen, W.Q.: Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos. Struct. 84(3), 209–219 (2008). https://doi.org/10.1016/j.compstruct.2007.07.004

    Article  Google Scholar 

  37. Şimşek, M., Al-shujairi, M.: Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Compos. Part B Eng. 108, 18–34 (2017). https://doi.org/10.1016/j.compositesb.2016.09.098

    Article  Google Scholar 

  38. Shahba, A., Attarnejad, R., Marvi, M.T., Hajilar, S.: Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. Part B Eng. 42(4), 801–808 (2011). https://doi.org/10.1016/j.compositesb.2011.01.017

    Article  Google Scholar 

  39. Rezaiee Pajand, M., Hozhabrossadati, S.M.: Analytical and numerical method for free vibration of double-axially functionally graded beams. Compos. Struct. 152, 488–498 (2016). https://doi.org/10.1016/j.compstruct.2016.05.003

    Article  Google Scholar 

  40. Khdeir, A.A., Aldraihem, O.J.: Free vibration of sandwich beams with soft core. Compos. Struct. 154, 179–189 (2016). https://doi.org/10.1016/j.compstruct.2016.07.045

    Article  Google Scholar 

  41. Rezaiee-Pajand, M., Masoodi Amir, R., Mokhtari, M.: Static analysis of functionally graded non-prismatic sandwich beams. Adv. Comput. Design Int. J. 3(2), 165–190 (2018). https://doi.org/10.12989/acd.2018.3.2.165

    Article  Google Scholar 

  42. Zaitsev, V.F., Polyanin, A.D.: (2002) Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press. ISBN 9781584882978

  43. Aydogdu, M.: Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Compos. Sci. Technol. 66(10), 1248–1255 (2006). https://doi.org/10.1016/j.compscitech.2005.10.029

    Article  Google Scholar 

  44. Aydogdu, M.: Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Int. J. Mech. Sci. 47(11), 1740–1755 (2005). https://doi.org/10.1016/j.ijmecsci.2005.06.010

    Article  MATH  Google Scholar 

  45. Karnovskiĭ, I.A., Lebed, O.I.: Free Vibrations of Beams and Frames: Eigenvalues and Eigenfunctions. McGraw-Hill (2004)

  46. Wang, C.M., Wang, C.Y.: Exact Solutions for Buckling of Structural Members. CRC Press, Boca Raton (2004). ISBN 9780849322228

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rezaiee-Pajand.

Appendices

Appendix A

The coefficients \({\eta _1}\)\({\eta _4}\) of Eq. (12) are simplified and given in a closed form below:

$${\eta _1}= - \frac{2}{3}\frac{{{h_0}^{3}b{\Omega ^3}\left( {\left( {{p^3}+6{p^2}+11p} \right){E_{\text{c}}}+6{E_{\text{m}}}} \right)}}{{{L^3}\left( {v - 1} \right)\left( {v+1} \right)\left( {p+2} \right)\left( {p+3} \right)\left( {p+1} \right)}},$$
$${\eta _2}= - \frac{{2{h_0}^{2}{\Omega ^2}\left( {{E_{\text{c}}}\left( {b{h_0}+{h_{\text{f}}}} \right){p^3}+6{E_{\text{c}}}\left( {b{h_0}+{h_{\text{f}}}} \right){p^2}+11{E_{\text{c}}}\left( {b{h_0}+{h_{\text{f}}}} \right)p+6b{E_{\text{m}}}{h_0}+6{E_{\text{c}}}{h_{\text{f}}}} \right)}}{{\left( {v - 1} \right)\left( {v+1} \right){L^2}\left( {p+2} \right)\left( {p+3} \right)\left( {p+1} \right)}},$$
$$\begin{aligned} {\eta _3} & = - \frac{2}{3}\frac{{\left( {\frac{{3{E_{\text{c}}}{p^3}{h_0}^{3}\Omega }}{L}+\frac{{18{E_{\text{c}}}{p^2}{h_0}^{3}\Omega }}{L}+\frac{{33{E_{\text{c}}}p{h_0}^{3}\Omega }}{L}+\frac{{18{E_{\text{c}}}{h_0}^{3}\Omega }}{L}} \right)b}}{{\left( {{v^2}p+2{v^2} - p - 2} \right)\left( {p+3} \right)\left( {p+1} \right)}}+\frac{2}{3}\frac{{\left( {\frac{{18{E_{\text{c}}}{h_0}^{3}\Omega }}{L} - \frac{{18{E_{\text{m}}}{h_0}^{3}\Omega }}{L}} \right)b}}{{\left( {{v^2}p+2{v^2} - p - 2} \right)\left( {p+3} \right)\left( {p+1} \right)}} \\ & \quad +\frac{2}{3}\frac{{{E_{\text{c}}}\left( {\frac{{3{{\left( {{h_0}+{h_{\text{f}}}} \right)}^2}{h_0}\Omega }}{L} - \frac{{3{h_0}^{3}\Omega }}{L}} \right)}}{{ - {v^2}+1}}, \\ \end{aligned}$$
$$\begin{aligned} {\eta _4} & = - \frac{2}{3}\frac{{\left( {{E_{\text{c}}}{h_0}^{3}{p^3}+6{E_{\text{c}}}{h_0}^{3}{p^2}+11{E_{\text{c}}}{h_0}^{3}p+6{E_{\text{c}}}{h_0}^{3}} \right)b}}{{\left( {{v^2}p+2{v^2} - p - 2} \right)\left( {p+3} \right)\left( {p+1} \right)}}+\frac{2}{3}\frac{{\left( {6{E_{\text{c}}}{h_0}^{3} - 6{E_{\text{m}}}{h_0}^{3}} \right)b}}{{\left( {{v^2}p+2{v^2} - p - 2} \right)\left( {p+3} \right)\left( {p+1} \right)}} \\ & \quad +\frac{2}{3}\frac{{{E_{\text{c}}}\left( {{{\left( {{h_0}+{h_{\text{f}}}} \right)}^3} - {h_0}^{3}} \right)}}{{ - {v^2}+1}}. \\ \end{aligned}$$

Appendix B

Herein, the Bessel functions appeared in Eq. (23) are presented:

$${J_n}(x)=\sum\limits_{{m=0}}^{\infty } {\frac{{{{( - 1)}^m}}}{{m!\Gamma (m+n+1)}}{{\left( {\frac{x}{2}} \right)}^{2m+n}}} ,$$
(39)
$${Y_n}(x)=\frac{{{J_n}(x)\cos \;(n\pi ) - {J_{ - n}}(x)}}{{\sin \;(n\pi )}}.$$
(40)

In the Bessel relations, \(\Gamma\) denotes the gamma function. It is obvious that these harmonic functions lead to sinusoidal and cosinusoidal functions under certain circumstances.

Appendix C

The determinant of coefficients matrix given in Eq. (25) in a closed form is:

$${\varphi _1}=\frac{{2\mu }}{{L\beta }},$$
$${\varphi _2}=\frac{{{L^2}\psi }}{\alpha },$$
$${\varphi _3}={L^2},$$
$${\varphi _4}=\beta {\varphi _3},$$
$${\varphi _5}={\beta ^2}(\beta {\xi _0}{\varphi _3}+L{\varphi _2} - {\mu ^2} - {\xi _0}{\varphi _4})\varphi _{1}^{2}+4{\varphi _2}{\xi _0},$$
$${\varphi _6}=2\beta {\varphi _1}{\xi _0}\left( { - \frac{1}{4}{\beta ^2}\varphi _{1}^{2}{\varphi _3}+L{\varphi _2}} \right),$$
$${\varphi _7}=8{\xi _0}{\xi _1}{\varphi _2}{e^{ - \frac{1}{2}L\beta }},$$
$${\varphi _8}=\beta {\varphi _1}\left( {{e^{ - L\beta }}} \right),$$
$$\begin{aligned} det[A]&=\frac{{\beta {\varphi _1}}}{{16}}\left[\vphantom{\left.\left.\left.- 4{\varphi _2}{\xi _0})({J_0}({\varphi _1}){Y_1}({\varphi _1}) - {Y_0}({\varphi _1}){J_0}({\varphi _1})\right)\right)\right]}{J_0}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)\left({\varphi _7}{Y_1}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)\right.\right. \hfill \\ &\quad\left.\left.- {\varphi _8}({\varphi _5}{Y_0}({\varphi _1})+{\varphi _6}{Y_1}({\varphi _1})) - 4{\xi _1}{\varphi _2}(\beta {\varphi _1}{Y_0}({\varphi _1})\right.\right. \hfill \\ &\quad \left.\left.\vphantom{\left({\varphi _7}{Y_1}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)\right.}+2{\xi _0}{Y_1}({\varphi _1}))\right)+{Y_0}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)\left( - {\varphi _7}{J_1}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)\right.\right. \hfill \\ &\quad \left.\left.+{\varphi _8}({\varphi _5}{J_0}({\varphi _1})+{\varphi _6}{J_1}({\varphi _1}))+4{\xi _1}{\varphi _2}(\beta {\varphi _1}{J_0}({\varphi _1})\right.\right. \hfill \\ &\quad \left.\left.{\vphantom{\left( - {\varphi _7}{J_1}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)\right.}}+2{\xi _0}{J_1}({\varphi _1}))\right) - 2{\xi _1}\left( - {e^{ - \tfrac{{\beta L}}{2}}}{J_1}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)({\varphi _5}{Y_0}({\varphi _1})\right.\right. \hfill \\ &\quad \left.\left.+{\varphi _6}{Y_1}({\varphi _1}))+{e^{ - \tfrac{{\beta L}}{2}}}{Y_1}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)({\varphi _5}{J_0}({\varphi _1})+{\varphi _6}{J_1}({\varphi _1}))\right. \right.\hfill \\ &\quad \left.\left.+\left( - \frac{{{\beta ^4}\varphi _{1}^{4}{\varphi _3}}}{4}+{\beta ^2}\varphi _{1}^{2}( - \beta {\xi _0}{\varphi _3}+{\mu ^2}+{\xi _0}{\varphi _4})\right. \right.\right.\hfill \\ &\quad \left.\vphantom{\left[{J_0}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)({\varphi _7}{Y_1}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)\right.}\left.\vphantom{\left( - {e^{ - \tfrac{{\beta L}}{2}}}{J_1}\left( {{\varphi _1}{e^{ - \tfrac{{\beta L}}{2}}}} \right)({\varphi _5}{Y_0}({\varphi _1})\right.}\left.\vphantom{\left( - \frac{{{\beta ^4}\varphi _{1}^{4}{\varphi _3}}}{4}+{\beta ^2}\varphi _{1}^{2}( - \beta {\xi _0}{\varphi _3}+{\mu ^2}+{\xi _0}{\varphi _4})\right.}- 4{\varphi _2}{\xi _0})({J_0}({\varphi _1}){Y_1}({\varphi _1}) - {Y_0}({\varphi _1}){J_0}({\varphi _1})\right)\right)\right]. \hfill \\ \end{aligned}$$

Appendix D

The entries of the coefficient matrix of Eq. (25) together with the correlation coefficient are expressed by the following:

$${A_{11}}={\mu ^2},$$
$${A_{12}}=\frac{{{L^2}\psi }}{\alpha },$$
$${A_{13}}=\frac{{{L^2}{J_0}\left( {\frac{{2\mu }}{{L\beta }}} \right)\psi }}{\alpha },$$
$${A_{14}}=\frac{{{L^2}{Y_0}\left( {\frac{{2\mu }}{{L\beta }}} \right)\psi }}{\alpha },$$
$${A_{21}}=L,$$
$${A_{22}}=1,$$
$${A_{23}}={J_0}\left( {\frac{{2\mu {e^{ - \frac{1}{2}L\beta }}}}{{L\beta }}} \right),$$
$${A_{24}}={Y_0}\left( {\frac{{2\mu {e^{ - \frac{1}{2}L\beta }}}}{{L\beta }}} \right),$$
$${A_{31}}={\xi _0},$$
$${A_{32}}=0,$$
$${A_{33}}=\frac{{L{J_1}\left( {\frac{{2\mu }}{{L\beta }}} \right)\mu {\xi _0}+{J_0}\left( {\frac{{2\mu }}{{L\beta }}} \right){\mu ^2}}}{{{L^2}}},$$
$${A_{34}}=\frac{{L{Y_1}\left( {\frac{{2\mu }}{{L\beta }}} \right)\mu {\xi _0}+{Y_0}\left( {\frac{{2\mu }}{{L\beta }}} \right){\mu ^2}}}{{{L^2}}},$$
$${A_{41}}={\xi _1},$$
$${A_{42}}=0,$$
$${A_{43}}=\frac{{{e^{ - \frac{1}{2}L\beta }}\mu {\xi _1}L{J_1}\left( {\frac{{2\mu {e^{ - \frac{1}{2}L\beta }}}}{{L\beta }}} \right) - {e^{ - L\beta }}{\mu ^2}{J_0}\left( {\frac{{2\mu {e^{ - \frac{1}{2}L\beta }}}}{{L\beta }}} \right)}}{{{L^2}}},$$
$${A_{44}}=\frac{{{e^{ - \frac{1}{2}L\beta }}\mu {\xi _1}L{Y_1}\left( {\frac{{2\mu {e^{ - \frac{1}{2}L\beta }}}}{{L\beta }}} \right) - {e^{ - L\beta }}{\mu ^2}{Y_0}\left( {\frac{{2\mu {e^{ - \frac{1}{2}L\beta }}}}{{L\beta }}} \right)}}{{{L^2}}}.$$

Appendix E

The shifted Legendre polynomials are given by the following:

$${L_j}(2\bar {x} - 1)={( - 1)^j}\sum\limits_{{k=0}}^{j} {\left( \begin{gathered} j \hfill \\ k \hfill \\ \end{gathered} \right)\left( \begin{gathered} j+k \hfill \\ k \hfill \\ \end{gathered} \right)} {( - \bar {x})^k}.$$
(41)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaiee-Pajand, M., Mokhtari, M. & Masoodi, A.R. Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections. CEAS Aeronaut J 9, 629–648 (2018). https://doi.org/10.1007/s13272-018-0311-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-018-0311-6

Keywords

Navigation