Skip to main content

Advertisement

Log in

Influence of a back-flow flap on the dynamic stall flow topology

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Dynamic stall is a major concern for highly loaded helicopter rotors in fast forward flight. The potential of a back-flow flap for dynamic stall reduction is investigated. The flap assembly is mounted on the suction side of a helicopter main rotor-blade airfoil undergoing deep-stall pitch oscillations. Wind-tunnel experiments using high-speed particle image velocimetry were conducted to identify the flow topology and to investigate the flap’s method of operation. A phase-averaged proper orthogonal decomposition (POD) is used to identify relevant flow events and to compare test cases with and without flap. The evolution of the large-scale dynamic stall vortex in the initial phases of flow separation is analyzed in detail. The back-flow flap splits the vortex into two smaller vortices and thereby reduces the pitching-moment peak. This effect can be described through the eigenmode coefficients of the POD. The study closes with an analysis of different pitching frequencies, which do not affect the flap’s method of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

a :

Temporal POD coefficient

c :

Airfoil model chord (m)

\(C_d\) :

Drag coefficient

\(C_l\) :

Lift coefficient

\(C_m\) :

Pitching moment coefficient

\(C_p\) :

Pressure coefficient

f :

Frequency of pitching (Hz)

k :

Reduced frequency, \(k = \pi f c / V_\infty\)

m :

POD mode number

M :

Mach number

N :

Number of samples

\(N^*\) :

Reduced-order cut-off

Re :

Reynolds number based on c

t :

Time (s)

uw :

Velocity in x direction and z direction (m/s)

\(\varvec{u}\) :

Vector of 2-D velocity components, \(\varvec{u} = (u,w)\)

\(V_{\infty }\) :

Freestream velocity (m/s)

\(V_p\) :

In-plane velocity, \(V_p = \sqrt{u^2+w^2}\) (m/s)

xz :

Cartesian coordinates (m)

\(\varvec{x}\) :

Vector of 2-D coordinates, \(\varvec{x} = (x,z)\)

\(\alpha\) :

Angle of attack (\(^\circ\))

\(\beta\) :

Opening angle (\(^\circ\))

\(\Delta\) :

Difference of two values

\(\lambda\) :

Eigenvalue

\(\varvec{\Phi }\) :

Eigenmode, eigen flow field

1MG:

‘1-meter’ wind tunnel at DLR Göttingen

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

PIV:

Particle image velocimetry

POD:

Proper orthogonal decomposition

References

  1. McCroskey, W.J., Carr, L.W., McAlister, K.W.: Dynamic stall experiments on oscillating airfoils. AIAA. J. 14(1), 57–63 (1976). https://doi.org/10.2514/3.61332

    Article  Google Scholar 

  2. McCroskey, W.J.: The phenomenon of dynamic stall, NASA TM-81264 (1981)

  3. Carr, L.W., McAlister, K. W., McCroskey, W.J.: Analysis of the development of dynamic stall based on oscillating airfoil experiments. NASA TN-D-8382 (1977)

  4. Joubert, G., Le Pape, A., Heine, B., Huberson, S.: Deployable vortex generator dynamic stall alleviation through experimental and numerical investigations. J. Am. Helicopter. Soc. 58(3), 1–13 (2013). https://doi.org/10.4050/JAHS.58.032005

    Article  Google Scholar 

  5. Le Pape, A., Costes, M., Richez, F., Joubert, G., David, F., Deluc, J.-M.: Dynamic stall control using deployable leading-edge vortex generators. AIAA J. 50(10), 2135–2145 (2012). https://doi.org/10.2514/1.J051452

    Article  Google Scholar 

  6. Heine, B., Mulleners, K., Joubert, G., Raffel, M.: Dynamic stall control by passive disturbance generators. AIAA J. 51(9), 2086–2097 (2013). https://doi.org/10.2514/1.J051525

    Article  Google Scholar 

  7. Greenblatt, D., Wygnanski, I.: Dynamic stall by periodic excitation, Part 1: NACA 0015 parametric study. J. Aircr. 38(3), 430–438 (2001). https://doi.org/10.2514/2.2810

    Article  Google Scholar 

  8. Greenblatt, D., Nishri, B., Darabi, A., Wygnanski, I.: Dynamic stall control by periodic excitation, Part 2: Mechanisms. J. Aircr. 38(3), 439–447 (2001). https://doi.org/10.2514/2.2811

    Article  Google Scholar 

  9. Post, M.L., Corke, T.C.: Separation control using plasma actuators: Dynamic stall vortex control on oscillating airfoil. AIAA. J. 44(12), 3125–3135 (2006). https://doi.org/10.2514/1.22716

    Article  Google Scholar 

  10. Chandrasekhara, M.S., Wilder, M.C., Carr, L.W.: Unsteady stall control using dynamically deforming airfoils. AIAA J 36(10), 1792–1800 (1998). https://doi.org/10.2514/2.294

    Article  Google Scholar 

  11. Gerontakos, P., Lee, T.: Dynamic stall flow control via a trailing-edge flap. AIAA J 44(3), 469–480 (2006). https://doi.org/10.2514/1.17263

    Article  Google Scholar 

  12. Meyer, R. K. J.: Experimentelle Untersuchungen von Rückströmklappen auf Tragflügeln zur Beeinflussung von Strömungsablösung. PhD Thesis, Technical University of Berlin (2000). ISBN: 3898202054

  13. Meyer, R., Hage, W., Bechert, D.W., Schatz, M., Knacke, T., Thiele, F.: Separation control by self-activated movable flaps. AIAA J. 45(1), 191–199 (2007). https://doi.org/10.2514/1.23507

    Article  Google Scholar 

  14. Bramesfeld, G., Maughmer, M.D.: Experimental investigation of self-actuating, upper-surface, high-lift-enhancing effectors. J Aircr. 39(1), 120–124 (2002). https://doi.org/10.2514/2.2905

    Article  Google Scholar 

  15. Höfinger, M.: Rotor blade with integrated passive surface flap. Patent US9193456 B2 (2015)

  16. Kaufmann, K., Gardner, A. D., Richter, K.: Numerical investigations of a back-flow flap for dynamic stall control. In: Dillmann, A., Heller, G., Krämer, E., Kreplin, H.-P., Nitsche, W., Rist, U. (Eds.) New Results in Numerical and Experimental Fluid Mechanics IX, pp. 255-262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-03158-3_26

  17. Opitz, S., Gardner, A.D., Kaufmann, K.: Aerodynamic and structural investigation of an active back-flow flap for dynamic stall control. CEAS Aeronaut. J. 5(3), 279–291 (2014). https://doi.org/10.1007/s13272-014-0106-3

    Article  Google Scholar 

  18. Opitz, S., Kaufmann, K., Gardner, A.: An active back-flow flap of a helicopter rotor blade. Adv. Aircr. Spacecr. Sci. 1(1), 69–91 (2014). https://doi.org/10.12989/aas.2014.1.1.069

    Article  Google Scholar 

  19. Gardner, A.D., Opitz, S., Wolf, C.C., Merz, C.B.: Reduction of dynamic stall using a back-flow flap. CEAS Aeronaut. J. 8(2), 271–286 (2017). https://doi.org/10.1007/s13272-017-0237-4

    Article  Google Scholar 

  20. Merz, C. B., Wolf, C. C., Richter, K., Kaufmann, K., Raffel, M.: Experimental investigation of dynamic stall on a pitching rotor blade tip. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Breitsamter, C. (Eds.) New Results in Numerical and Experimental Fluid Mechanics X, pp. 339-348. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-27279-5_30

  21. Gardner, A.D., Richter, K., Mai, H., Neuhaus, D.: Experimental Investigation of Air Jets to Control Shock-Induced Dynamic Stall. J Am Helicopter Soc 59(2), 1–11 (2014). https://doi.org/10.4050/JAHS.59.022003

    Article  Google Scholar 

  22. Mai, H., Dietz, G., Geissler, W., Richter, K., Bosbach, J., Richard, H., de Groot, K.: Dynamic Stall Control by Leading Edge Vortex Generators. J Am Helicopter Soc 53(1), 26–36 (2008). https://doi.org/10.4050/JAHS.53.26

    Article  Google Scholar 

  23. Martin, P., Wilson, J., Berry, J., Wong, T., Moulton, M., McVeigh, M.: Passive Control of Compressible Dynamic Stall. 26th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, AIAA 2008-7506 (2008). doi: 10.2514/6.2008-7506

  24. Min, B.-Y., Lorber, P. F., Berezin, C. R., Wake, B. E., Scott, M. W.: Numerical Study of Retreating Side Blowing Concept for a Rotor in High Speed Flight. AHS 73rd Annual Forum, Fort Worth, TX, USA (2017)

  25. Raffel, M., Willert, C. E., Wereley, S. T., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide, 2nd ed., pp. 131-176, Springer-Verlag Berlin (2007). doi:10.1007/978-3-540-72308-0

  26. Sirovich, L.: Turbulence and the dynamics of coherent structures pt I-III. Q Appl Math 45(3), 561–590 (1987). https://doi.org/10.1090/qam/910462

    Article  MATH  Google Scholar 

  27. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25, 539–575 (1993). https://doi.org/10.1146/annurev.fl.25.010193.002543

    Article  MathSciNet  Google Scholar 

  28. Mulleners, K., Raffel, M.: The onset of dynamic stall revisited. Exp. Fluids 52(3), 779–793 (2012). https://doi.org/10.1007/s00348-011-1118-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Wolf.

Additional information

A version of this paper was presented at the European Rotorcraft Forum (ERF), Lille, France, September 5–8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, C.C., Gardner, A.D., Merz, C.B. et al. Influence of a back-flow flap on the dynamic stall flow topology. CEAS Aeronaut J 9, 39–51 (2018). https://doi.org/10.1007/s13272-017-0274-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-017-0274-z

Keywords

Navigation