Skip to main content
Log in

Numerical simulation of flexible aircraft structures under ditching loads

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Aircraft certification requires demonstrating an aircraft’s structural capacity to withstand hydrodynamic loads as experienced during an emergency landing on water known as ditching. Currently employed means to analyze ditching comprise comparison with previously certified aircraft, sub-scale experimental testing, and semi-analytical as well as uncoupled computational methods; all of these are subject to simplifications that limit their predictability and accuracy. Therefore, there is the motivation to employ advanced, coupled numerical simulations to enhance the analysis capabilities. This paper presents a numerical simulation approach combining Smoothed Particle Hydrodynamics and Finite Element method, which permits investigating the structural behavior under ditching loads within one simulation. Comprehensive validation studies based on comparison with experimental results from novel guided ditching experiments of generic panels in aeronautical design have been undertaken and high accuracy has been achieved regarding acting force and strain time histories. Additionally, the profound analysis of the structural behavior of flexible panels allows assessing the main mechanisms that cause the acting hydrodynamic loads to increase significantly when the structure is being deformed. Presented results extend the fundamental knowledge in this field. The validated simulation approach is finally applied to analyze the structural behavior of a detailed stringer-frame-reinforced panel representing a generic aircraft bottom fuselage structure. Comparison between the structural behavior of the generic panels and the aft fuselage structure is established. Furthermore, conclusions with regard to ditching simulations involving larger or even full aircraft structures are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Detailed information on the state-of-the-art analysis and certification procedures can be found in the literature [1, 4, 13, 28, 32].

  2. Office national d’études et de recherches aérospatiales—The French aerospace lab.

  3. The tensile instability in SPH refers to the occurrence of particle clumping, which yields poor results. A stability analysis and further details are reported in [30].

  4. Consiglio Nazionale delle Ricerche, Istituto Nazionale per Studi ed Esperienze di Architettura Navale Vasca Navale

  5. EU-FP7 project SMart Aircraft in Emergency Situations

References

  1. Abrate, S.: Hull Slamming. Applied Mechanics Reviews 64(6) (2011). doi:10.1115/1.4023571

  2. Benítez Montañés, L., Climent Máñez, H., Siemann, M., Kohlgrueber, D.: Ditching Numerical Simulations: Recent Steps in Industrial Applications. In: Aerospace Structural Impact Dynamics International Conference. Wichita, USA (2012)

  3. Benz, W.: Smooth particle hydrodynamics: a review. The Numerical Modelling of Nonlinear Stellar Pulsatations pp. 269–288 (1990)

  4. Climent, H., Benítez, L., Rosich, F., Rueda, F., Pentecôte, N.: Aircraft ditching numerical simulation. In: 25th International Congress of the Aeronautical Sciences. Hamburg, Germany (2006)

  5. Colagrossi, A.: A Meshless Lagrangian method for free-surface and interface flows with fragmentation. Ph.D. thesis, University of Rome La Sapienza (2003)

  6. ESI Group: Virtual Performance Solution 2010: Explicit Solver Refrence Manual (2010)

  7. ESI Group: Virtual Performance Solution 2010: Solver Notes Manual (2010)

  8. Groenenboom, P.H.L., Siemann, M.H.: Fluid-structure interaction by the mixed SPH-FE Method with application to aircraft ditching. In: Conference on SPH and Particle Methods for Fluids and Fluid Structure Interaction. Lille, France (2015)

  9. Hiermaier, S.J.: Structures under crash and impact: continuum mechanics, discretization and experimental characterization. Springer, New York (2008)

    Google Scholar 

  10. Hughes, K., Campbell, J.: Helicopter crashworthiness: a chronological review of water impact related research from 1982 to 2006. J. Am. Helicopter Soc. 53(4), 429–442 (2008). doi:10.4050/JAHS.53.429

    Article  Google Scholar 

  11. Hughes, K., Campbell, J., Vignjevic, R.: Application of the finite element method to predict the crashworthy response of a metallic helicopter under floor structure onto water. Int. J. Impact Eng. 35(5), 347–362 (2008). doi:10.1016/j.ijimpeng.2007.03.009

    Article  Google Scholar 

  12. Hughes, K., Vignjevic, R., Campbell, J.: Experimental observations of an 8 m/s drop test of a metallic helicopter underfloor structure onto water: part 2. J. Aerosp. Eng. 221, 679–690 (2007). doi:10.1243/09544100JAERO228

    Google Scholar 

  13. Hughes, K., Vignjevic, R., Campbell, J., DeVuyst, T., Djordjevic, N., Papagiannis, L.: From aerospace to offshore: bridging the numerical simulation gaps-simulation advancements for fluid structure interaction problems. Int. J. Impact Eng. 61, 48–63 (2013). doi:10.1016/j.ijimpeng.2013.05.001

    Article  Google Scholar 

  14. Hughes, T.J.R., Tezduyar, T.E.: Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear lsoparametric element. J. Appl. Mech. 48, 587–596 (1981)

    Article  MATH  Google Scholar 

  15. Iafrati, A.: Experimental investigation of the water entry of a rectangular plate at high horizontal velocity. Journal of Fluid Mechanics pp. 637–672 (2016). doi:10.1017/jfm.2016.374

  16. Iafrati, A., Grizzi, S., Siemann, M.H., Benítez Montañés, L.: High-speed ditching of a flat plate: experimental data and uncertainty assessment. J. Fluids Struct. 55(May), 501–525 (2015). doi:10.1016/j.jfluidstructs.2015.03.019

    Article  Google Scholar 

  17. Jackson, K.E., Fasanella, E.L., Lyle, K.H.: Crash certification by analysis—are we there yet. In: American Helicopter Society 62nd Annual Forum. Phoenix, AZ, USA (2006)

  18. Ma, Z.H., Causon, D.M., Qian, L., Mingham, C.G., Mai, T., Greaves, D., Raby, A.: Pure and aerated water entry of a flat plate. Physics of Fluids 28(1) (2016). DOI 10.1063/1.4940043

  19. Macià, F., Souto-Iglesias, A., Antuono, M., Colagrossi, A.: Benefits of using a Wendland kernel for free-surface flows. In: 6th international SPHERIC workshop, pp. 30–37. Hamburg, Germany (2011)

  20. Monaghan, J.J.: Shock simulation by the particle method SPH. J. Comput. Phys. 52, 374–389 (1983)

    Article  MATH  Google Scholar 

  21. Monaghan, J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82(1), 1–15 (1989). doi:10.1016/0021-9991(89)90032-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  23. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005). doi:10.1088/0034-4885/68/8/R01

    Article  MathSciNet  MATH  Google Scholar 

  24. Parshikov, A.N., Medin, S.A.: Smoothed particle hydrodynamics using interparticle contact algorithms. J. Comput. Phys. 180(1), 358–382 (2002). doi:10.1006/jcph.2002.7099

    Article  MATH  Google Scholar 

  25. Parshikov, A.N., Medin, S.A., Loukashenko, I.I., Milekhin, V.A.: Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities. Int. J. Impact Eng. 24, 779–796 (2000). doi:10.1016/S0734-743X(99)00168-2

    Article  Google Scholar 

  26. Patel, A.A., Greenwood Jr., R.P.: Transport water impact and ditching performance. Tech. rep, FAA, Washington, D. C., USA (1996)

  27. Pearce, G.M., Johnson, A.F., Thomson, R.S., Kelly, D.W.: Experimental investigation of dynamically loaded bolted joints in carbon fibre composite structures. Appl. Compos. Mater. 17(3), 271–291 (2009). doi:10.1007/s10443-009-9120-8

    Article  Google Scholar 

  28. Siemann, M.H.: Numerical and experimental investigation of the structural behavior during aircraft emergency landing on water. Doctoral thesis, University of Stuttgart (2016)

  29. Siemann, M.H., Schwinn, D.B., Scherer, J., Kohlgrüber, D.: Advances in numerical ditching simulation of flexible aircraft models. In: 2nd Aerospace Structural Impact Dynamics International Conference. Seville, Spain (2015)

  30. Swegle, J.W., Hicks, D.L., Attaway, S.W.: Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116, 123–134 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tait, P.G.: Report on some of the physical properties of fresh water and sea water. Phys. Chem. 2, 1–76 (1888)

    Google Scholar 

  32. Toso, N.: Contribution to the modelling and simulation of aircraft structures impacting on water. Doctoral thesis, University of Stuttgart (2009). doi:10.18419/opus-3823

  33. Waimer, M., Kohlgrüber, D., Keck, R., Voggenreiter, H.: Contribution to an improved crash design for a composite transport aircraft fuselagedevelopment of a kinematics model and an experimental component test setup. CEAS Aeronaut. J. 4(3), 265–275 (2013). doi:10.1007/s13272-013-0070-3

    Article  Google Scholar 

  34. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995). doi:10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Siemann.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 13–15, 2016, Braunschweig, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siemann, M.H., Kohlgrüber, D. & Voggenreiter, H. Numerical simulation of flexible aircraft structures under ditching loads. CEAS Aeronaut J 8, 505–521 (2017). https://doi.org/10.1007/s13272-017-0257-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-017-0257-0

Keywords

Navigation