Skip to main content
Log in

Comparative analysis of genome-based CAZyme cassette in Antarctic Microbacterium sp. PAMC28756 with 31 other Microbacterium species

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

The genus Microbacterium belongs to the family Microbacteriaceae and phylum Actinobacteria. A detailed study on the complete genome and systematic comparative analysis of carbohydrate-active enzyme (CAZyme) among the Microbacterium species would add knowledge on metabolic and environmental adaptation. Here we present the comparative genomic analysis of CAZyme using the complete genome of Antarctic Microbacterium sp. PAMC28756 with other complete genomes of 31 Microbacterium species available.

Objective

The genomic and CAZyme comparison of Microbacterium species and to rule out the specific features of CAZyme for the environmental and metabolic adaptation.

Methods

Bacterial source were collected from NCBI database, CAZyme annotation of Microbacterium species was analyzed using dbCAN2 Meta server. Cluster of orthologous groups (COGs) analysis was performed using the eggNOG4.5 database. Whereas, KEGG database was used to compare and obtained the functional genome annotation information in carbohydrate metabolism and glyoxylate cycle.

Results

Out of 32 complete genomes of Microbacterium species, strain No. 7 isolated from Activated Sludge showed the largest genomic size at 4.83 Mb. The genomic size of PAMC28756 isolated from Antarctic lichen species Stereocaulons was 3.54 Mb, the G + C content was 70.4% with 3,407 predicted genes, of which 3.36% were predicted CAZyme. In addition, while comparing the Glyoxylate cycle among 32 bacteria, except 10 strains, all other, including our strain have Glyoxylate pathway. PAMC28756 contained the genes that degrade cellulose, hemicellulose, amylase, pectinase, chitins and other exo-and endo glycosidases. Utilizing these polysaccharides can provides source of energy in an extreme environment. In addition, PAMC28756 assigned the (10.15%) genes in the carbohydrate transport and metabolism functional group closely related to the CAZyme for polysaccharides degradation.

Conclusions

The genomic content and CAZymes distribution was varied in Microbacterium species. There was the presence of more than 10% genes in the carbohydrate transport and metabolism functional group closely related to the CAZyme for polysaccharides degradation. In addition, occurrence of glyoxylate cycle for alternative utilization of carbon sources suggest the adaptation of PAMC28756 in the harsh microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn S, Jung J, Jang IA, Madsen EL, Park W (2016) Role of glyoxylate shunt in oxidative stress response. J Biol Chem 291:11928–11938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez C, Reyes-Sosa FM, Díez B (2016) Enzymatic hydrolysis of biomass from wood. Microbiol Biotechnol 9:149–156

    Article  CAS  Google Scholar 

  • Barbeyron T, Thomas F, Barbe V, Teeling H, Schenowitz C, Dossat C, Goesmann A, Leblanc C, Glöckner FO, Czjzek M, Amann R, Michel G (2016) Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans DsijT. Environ Microbiol 18:4610–4627

    Article  CAS  PubMed  Google Scholar 

  • Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, de Vries RP (2011) Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genom 12:38

    Article  CAS  Google Scholar 

  • Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30:1575–1588

    Article  CAS  PubMed  Google Scholar 

  • Blackman LM, Cullerne DP, Hardham AR (2014) Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genom 15:785

    Article  Google Scholar 

  • Boncan DA, David AME, Lluisma AO (2018) A CAZyme-rich genome of a taxonomically novel rhodophyte-associated carrageenolytic marine bacterium. Mar Biotechnol (NY) 20:685–705

    Article  CAS  Google Scholar 

  • Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broeker J, Mechelke M, Baudrexl M, Mennerich D, Hornburg D, Mann M, Schwarz WH, Liebl W, Zverlov VV (2018) The hemicellulose-degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: Comparative characterisation and addition of new hemicellulolytic glycoside hydrolases. Biotechnol Biofuels 11:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brumm PJ (2013) Bacterial genomes: What they teach us about cellulose degradation. Biofuels 4:669–681

    Article  CAS  Google Scholar 

  • Bruno S, Coppola D, di Prisco G, Giordano D, Verde C (2019) Enzymes from marine polar regions and their biotechnological applications. Mar Drugs 17:544

    Article  CAS  PubMed Central  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Chernysheva N, Bystritskaya E, Stenkova A, Golovkin I, Nedashkovskaya O, Isaeva M (2019) Comparative genomics and CAZyme genome repertoires of marine Zobellia amurskyensis KMM 3526T and Zobellia laminariae KMM 3676T. Mar Drugs 17:661

    Article  CAS  PubMed Central  Google Scholar 

  • Colston SM, Fullmer MS, Bekass L, Lamy B, Gogarten JP, Graf J (2014) Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using aeromonas as a test case. Mbio 5:e02136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corretto E, Antonielli L, Sessitsch A, Höfer C, Puschenreiter M, Widhalm S, Swarnalakshmi K, Brader G (2020) Comparative genomics of Microbacterium species to reveal diversity, potential for secondary metabolites and heavy metal resistance. Front Microbiol 11:1869

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalmaso GZ, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza PM, de Oliveira MP (2010) Application of microbial α-amylase in industry-a review. Braz J Microbiol 41:850–861

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    Article  CAS  PubMed  Google Scholar 

  • Evtushenko LI, Takeuchi M (2006) The family microbacteriaceae. Prokaryotes 3:1020–1098

    Article  Google Scholar 

  • Galperin MY, Kristensen DM, Makarova KS, Wolf YI, Koonin EV (2019) Microbial genome analysis: the COG approach. Brief Bioinform 20:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Wang M, Zhang YC, Zou XL, Xie LQ, Hu HY, Xu J, Gao JL, Sun JG (2013) Microbacterium neimengense sp. nov., isolated from the rhizosphere of maize. Int J Syst Evol Microbiol 63:236–240

    Article  CAS  PubMed  Google Scholar 

  • Gibbs M, Gfeller RP, Chen C (1986) Fermentative metabolism of Chlamydomonas reinhardii: III. Photoassimilation of acetate. Plant Physiol 82:160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  • Goward CR, Nicholls DJ (1994) Malate dehydrogenase: a model for structure, evolution, and catalysis. Protein Sci 3:1883–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85

    Article  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspectivem. Proc Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • Han SR, Kim KH, Ahn DH, Park H, Oh TJ (2016) Complete genome sequence of carotenoid-producing Microbacterium sp. strain PAMC28756 isolated from an Antarctic lichen. J Biotechnol 226:18–19

    Article  CAS  PubMed  Google Scholar 

  • Han SR, Kim DW, Kim B, Chi YM, Kang SH, Park H, Jung SH, Lee JH, Oh TJ (2019) Complete genome sequencing of Shigella sp. PAMC 28760: Identification of CAZyme genes and analysis of their potential role in glycogen metabolism for cold survival adaptation. Microb Pathog 137:103759

    Article  CAS  PubMed  Google Scholar 

  • Han SR, Jang SM, Chi YM, Kim B, Jung SH, Lee YM, Uetake J, Lee JH, Park H, Oh TJ (2020) Complete genome sequence of Sphingobium sp. strain PAMC 28499 reveals a potential for degrading pectin with comparative genomics approach. Genes Genom 42:1087–1096

    Article  CAS  Google Scholar 

  • Harvey AJ, Hrmova M, De Gori R, Varghese JN, Fincher GB (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins 41:257–269

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene 81:83–95

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293

    Article  CAS  PubMed  Google Scholar 

  • Hwang SY, Nakashima K, Okai N, Okazaki F, Miyake M, Harazono K, Ogino C, Kondo A (2013) Thermal stability and starch degradation profile of α-amylase from Streptomyces avermitilis. Biosci Biotechnol Biochem 77:2449–2453

    Article  CAS  PubMed  Google Scholar 

  • Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10:5029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Yim JH (2007) Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653. J Microbiol 45:510–514

    CAS  PubMed  Google Scholar 

  • Kim EJ, Fathoni A, Jeong GT, Jeong HD, Nam TJ, Kong IS, Kim JK (2013) Microbacterium oxydans, a novel alginate- and laminarin-degrading bacterium for the reutilization of brown-seaweed waste. J Environ Manage 130:153–159

    Article  CAS  PubMed  Google Scholar 

  • Kornberg HL (1966) The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-l-arabinofuranosidase and β-d-xylosidase activity characterization, primary structures, and cooh-terminal processing. J Biol Chem 278:5377–5387

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Kim EH, Lee HK, Hong SG (2014) Biodiversity and physiological characteristics of Antarctic and Arctic lichens-associated bacteria. World J Microbiol Biotechnol 30:2711–2721

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Wu S, Jin W, Sun C (2016) Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities. Sci Rep 6:18726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calviño A, Rivas F, Batista S (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256

    Article  CAS  PubMed  Google Scholar 

  • López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maloy SR, Bohlander MA, Nunn WD (1980) Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J Bacteriol 143:720–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203

    Article  CAS  PubMed  Google Scholar 

  • Meng YC, Liu HC, Yang LL, Kang YQ, Zhou YG, Cai M (2016) Microbacterium sorbitolivorans sp. nov., a novel member of Microbacteriaceae isolated from fermentation bed in pigpen. Int J Syst Evol Microbiol 66:5556–5561

    Article  CAS  PubMed  Google Scholar 

  • Mohite BV, Kamalja KK, Patil SV (2012) Statistical optimization of culture conditions for enhanced bacterial cellulose production by Gluconoacetobacter hansenii NCIM 2529. Cellulose 19:1655–1666

    Article  CAS  Google Scholar 

  • Molenaar D, van der Rest ME, Petrović S (1998) Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum. Eur J Biochem 254:395–403

    Article  CAS  PubMed  Google Scholar 

  • Montella S, Ventorino V, Lombard V, Henrissat B, Pepe O, Faraco V (2017) Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Sci Rep 7:42623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munir RI, Schellenberg J, Henrissat B, Verbeke TJ, Sparling R, Levin DB (2014) Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability. PLoS ONE 9:e104260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park YJ, Jeong YU, Kong WS (2018) Genome sequencing and carbohydrate-active enzyme (CAZyme) repertoire of the white rot fungus Flammulina elastica. Int J Mol Sci 19:2379

    Article  PubMed Central  CAS  Google Scholar 

  • Park C, Shin B, Park W (2019) Alternative fate of glyoxylate during acetate and hexadecane metabolism in Acinetobacter oleivorans DR1. Sci Rep 9:14402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puckett S, Trujillo C, Wang Z, Eoh H, Loerger TR, Krieger I, Sacchettini J, Schnappinger D, Rhee KY, Ehrt S (2017) Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 114:E2225–E2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian F, An L, Wang M, Li C, Li X (2007) Isolation and characterization of a xanthan-degrading Microbacterium sp. strain XT11 from garden soil. J Appl Microbiol 102:1362–1371

    Article  CAS  PubMed  Google Scholar 

  • Rajput KN, Patel KC, Trivedi UB (2016) β-cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR 9 using different starch substrates. Biotechnol Res Int 2016:2034359

    PubMed  PubMed Central  Google Scholar 

  • Raveendran S, Parameswaran B, Beevi Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56:16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Sanoja R, Ruiz B, Guyot JP, Sanchez S (2005) Starch-binding domain affects catalysis in two Lactobacillus α-amylases. Appl Environ Microbiol 71:297–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21

    CAS  PubMed  Google Scholar 

  • Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 78:614–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Tewari R, Rana SS, Soni R, Soni SK (2016) Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol 179:1346–1380

    Article  CAS  PubMed  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Lemire J, Mailloux RJ, Appanna VD (2008) A novel strategy involved anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS ONE 3:e2682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sista Kameshwar AK, Qin W (2017) Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 9:93–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spribille T, Tagirdzhanova G, Goyette S, Tuovinen V, Case R, Zandberg WF (2020) 3D biofilms: in search of the polysaccharides holding together lichen symbioses. FEMS Microbiol Lett 367:fnaa023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555–562

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Liu H, Wang X, Yang F, Li X (2019) Proteomic analysis of the xanthan-degrading pathway of Microbacterium sp. XT11. ACS Omega 4:19096–19105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuzukibashi O, Uchibori S, Kobayashi T, Saito M, Umezawa K, Ohta M, Shinozaki-Kuwahara N (2015) A selective medium for the isolation of Microbacterium species in oral cavities. J Microbiol Methods 116:60–65

    Article  PubMed  Google Scholar 

  • Valk V, Eeuwema W, Sarian FD, van der Kaaij RM, Dijkhuizen L (2015) Degradation of granular starch by the bacterium Microbacterium aurum strain B8.A involves a modular α-amylase enzyme system with FNIII and CBM25 domains. Appl Environ Microbiol 81:6610–6620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton JD (1994) Deconstructing the cell wall. Plant Physiol 104:1113–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZY, Wang RX, Zhou JS, Cheng JF, Li YH (2020) An assessment of the genomics, comparative genomics and cellulose degradation potential of Mucilaginibacter polytrichastri strain RG4-7. Bioresour Technol 297:122389

    Article  CAS  PubMed  Google Scholar 

  • Wright RR, Hobbie JE (1966) Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47:447–464

    Article  CAS  Google Scholar 

  • Xie Z, Lin W, Luo J (2017) Comparative phenotype and genome analysis of Cellvibrio sp. PR1, a xylanolytic and agarolytic bacterium from the Pearl river. Biomed Res Int 2017:6304248

    PubMed  PubMed Central  Google Scholar 

  • Xu T, Qi M, Liu H, Cao D, Xu C, Wang L, Qi B (2020) Chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801. AMB Express 10:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85:506–513

    Article  CAS  Google Scholar 

  • Zerillo MM, Adhikari BN, Hamilton JP, Buell CR, Lévesque CA, Tisserat N (2013) Carbohydrate-active enzymes in pythium and their role in plant cell wall and storage polysaccharide degradation. PLoS ONE 8:e72572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Bryant DA (2015) Biochemical validation of the glyoxylate cycle in the cyanobacterium Chlorogloeopsis fritschii strain PCC 9212. J Biol Chem 290:14019–14030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was a part of the project titled “Development of potential antibiotic compounds using polar organism resources (15250103, KOPRI Grant PM21030)”, funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jin Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13258_2022_1254_MOESM1_ESM.xlsx

Table S1: list of bacterial Gene Bank accession number and strains deposited in National Center for Biotechnology Information (NCBI). Table S2: Comparison of genomic characteristic between the complete genomes of Microbacterium species. Table S3: The functional classification of COG genes. Table S4: Prediction of carbohydrate metabolism genes and pathways in 32 complete genome of Microbacterium species by using Kyoto Encyclopedia of Genes and Genomes (KEGG) web service. Table S5: Predicated amount of carbohydrate-active enzymes in the complete genomes of Microbacterium species. Table S6: Predicated number of genes of the GH family involved in cellulose and starch degradation in 32 complete genome of Microbacterium species. Table S7: Predicated number of Glycoside hydrolase family (GHs). Table S8: Predicated number of Glycosyl transferase family (GTs). Table S9: Predicated number of Polysaccharide lyases family (PLs). Table S10: Predicated number of Carbohydrate esterase family (CEs). Table S11: Predicated number of Auxiliary activities family (AAs). Table S12: Predicated number of Carbohydrate-binding module family (CBMs). Table S13: Predicated GH families involved in hemicellulose degradation in 32 complete genomes of Microbacterium species. (Supplementary Materials). (XLSX 56 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Han, SR., Kim, B. et al. Comparative analysis of genome-based CAZyme cassette in Antarctic Microbacterium sp. PAMC28756 with 31 other Microbacterium species. Genes Genom 44, 733–746 (2022). https://doi.org/10.1007/s13258-022-01254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-022-01254-9

Keywords

Navigation