Skip to main content

Advertisement

Log in

Super‐resolution microscopy of genome organization

  • Perspective
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Recent advancements in sequencing and imaging technologies are providing new perspectives in solving the mystery of three-dimensional folding of genome in a nucleus. Chromosome conformation capture sequencing has discovered new chromatin structures such as topologically associated domains and loops in hundreds of kilobases. Super-resolution fluorescence microscopy with nanometer resolutions, in particular multiplexed approaches with sequence-specificity, has visualized chromatin structures from the rough folds of whole chromosomes to the fine loops of cis-regulatory elements in intact individual nuclei. Here, recent advancements in genome visualization tools with highly multiplexed labeling and reading are introduced. These imaging technologies have found ensemble behavior consistent to sequencing results, while unveiling single-cell variations. But, they also generated contradictory results on the roles of architectural proteins (like cohesion and CTCF) and enhancer-promoter interactions. Live-cell labeling methods for imaging specific genomic loci, especially the CRISPR/dCas9 system, are reviewed in order to give perspectives in the emergence of tools for visualizing genome structural dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beliveau BJ, Boettiger AN, Nir G, Bintu B, Yin P, Zhuang X, Wu C-t (2017) In situ super-resolution imaging of genomic DNA with OligoSTORM and OligoDNA-PAINT. In: Erfle H (ed) Super resolut microsc methods protocols. Springer, New York, pp 231–252

    Chapter  Google Scholar 

  • Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, Kinrot S, Yamaya K, Boettiger AN, Zhuang XW (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:419–419+

    Article  CAS  Google Scholar 

  • Boettiger AN, Bintu B, Moffitt JR, Wang SY, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu CT, Zhuang XW (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418-418+

    Article  CAS  Google Scholar 

  • Chen BH, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    Article  CAS  Google Scholar 

  • Chen KH, Boettiger AN, Moffitt JR, Wang SY, Zhuang XW (2015) Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090

    Article  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harbor Perspect Biol 2:a003889

    Article  Google Scholar 

  • de Wit E, Vos ESM, Holwerda SJB, Valdes-Quezada C, Verstegen M, Teunissen H, Splinter E, Wijchers PJ, Krijger PHL, de Laat W (2015) CTCF binding polarity determines chromatin looping. Mol Cell 60:676–684

    Article  Google Scholar 

  • Fang K, Chen XC, Li XW, Shen Y, Sun JL, Czajkowsky DM, Shao ZF (2018) Super-resolution imaging of individual human subchromosomal regions in situ reveals nanoscopic building blocks of higher-order structure. ACS Nano 12:4909–4918

    Article  CAS  Google Scholar 

  • Finn EH, Pegoraro G, Branda HB, Valton AL, Oomen ME, Dekker J, Mirny L, Misteli T (2019) Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176:1502-1502+

    Article  CAS  Google Scholar 

  • Fussner E, Strauss M, Djuric U, Li R, Ahmed K, Hart M, Ellis J, Bazett-Jones DP (2012) Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep 13:992–996

    Article  CAS  Google Scholar 

  • Germier T, Sylvain A, Silvia K, David L, Kerstin B (2018) Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods 142:16–23

    Article  Google Scholar 

  • Grob S, Cavalli G (2018) Technical review: a Hitchhiker’s guide to chromosome conformation capture. In: Bemer M, Baroux C (eds) Plant chromatin dynamics: methods and protocols. Springer, New York, pp 233–246

    Chapter  Google Scholar 

  • Gu B, Swigut T, Spencley A, Bauer MR, Chung MY, Meyer T, Wysocka J (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–1055

    Article  CAS  Google Scholar 

  • Kim JH, Rege M, Valeri J, Dunagin MC, Metzger A, Titus KR, Gilgenast TG, Gong WF, Beagan JA, Raj A et al (2019) LADL: light-activated dynamic looping for endogenous gene expression control. Nat Methods 16:633–633+

    Article  Google Scholar 

  • Lakadamyali M, Cosma MP (2020) Visualizing the genome in high resolution challenges our textbook understanding. Nat Methods 17:371–379

    Article  CAS  Google Scholar 

  • Lucas SJ, Zhang Y, Dudko KO, Murre C (2014) 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158:339–352

    Article  CAS  Google Scholar 

  • Ma HH, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang SJ, Pederson T (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA 112:3002–3007

    Article  CAS  Google Scholar 

  • Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN (2019) Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568:49–49+

    Article  CAS  Google Scholar 

  • McDowall AW, Smith JM, Dubochet J (1986) Cryoelectron microscopy of vitrified chromosomes in situ. EMBO J 5:1395–1402

    Article  CAS  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Chromosome territories. Nature 445:379–381

    Article  CAS  Google Scholar 

  • Miyanari Y, Ziegler-Birling C, Torres-Padilla ME (2013) Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 20:1321–1252

    Article  CAS  Google Scholar 

  • Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–59+

    Article  CAS  Google Scholar 

  • Neguembor MV, Sebastian-Perez R, Aulicino F, Gomez-Garcia PA, Cosma MP, Lakadamyali M (2018) (Po)STAC (Polycistronic SunTAg modified CRISPR) enables live-cell and fixed-cell super-resolution imaging of multiple genes. Nucleic Acids Res 46:e30

    Article  Google Scholar 

  • Nir G, Farabella I, Estrada CP, Ebeling CG, Beliveau BJ, Sasaki HM, Lee SD, Nguyen SC, McCole RB, Chattoraj S et al (2018) Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet 14:e1007872

    Article  Google Scholar 

  • Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, Tani T, Joti Y, Tomita M, Hibino K, Kanemaki MT et al (2017) Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol Cell 67:282

    Article  CAS  Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (RU Bodies). Science 183:330–332

    Article  CAS  Google Scholar 

  • Otterstrom J, Castells-Garcia A, Vicario C, Gomez-Garcia PA, Cosma MP, Lakadamyali M (2019) Super-resolution microscopy reveals how histone tail acetylation affects DNA compaction within nucleosomes in vivo. Nucleic Acids Res 47:8470–8484

    Article  CAS  Google Scholar 

  • Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O’Shea CC (2017) ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357:eaag0025

    Article  Google Scholar 

  • Ouellet J (2016) RNA fluorescence with light-up aptamers. Front Chem 4:29

    Article  Google Scholar 

  • Qin PW, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017) Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:14725

    Article  CAS  Google Scholar 

  • Rao SSP, Huang SC, St Hilaire BG, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID et al (2017) Cohesin loss eliminates all loop domains. Cell 171:305-305+

    Article  CAS  Google Scholar 

  • Ricci MA, Manzo C, Garcia-Parajo MF, Lakadamyali M, Cosma MP (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160:1145–1158

    Article  CAS  Google Scholar 

  • Rowley MJ, Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19:789–800

    Article  CAS  Google Scholar 

  • Sanborn AL, Rao SSP, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J et al (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA 112:E6456–E6465

    Article  CAS  Google Scholar 

  • Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC (2019) Super-resolution microscopy demystified. Nat Cell Biol 21:72–84

    Article  CAS  Google Scholar 

  • Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L et al (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature 551:51–51+

    Article  Google Scholar 

  • Song F, Chen P, Sun DP, Wang MZ, Dong LP, Liang D, Xu RM, Zhu P, Li GH (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376–380

    Article  CAS  Google Scholar 

  • Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang XW (2020) Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182:1641-1641+

    Article  CAS  Google Scholar 

  • Tsukamoto T, Hashiguchi N, Janicki SM, Tumbar T, Belmont AS, Spector DL (2000) Visualization of gene activity in living cells. Nat Cell Biol 2:871–878

    Article  CAS  Google Scholar 

  • Xiong H, Shi L, Wei L, Shen Y, Long R, Zhao Z, Min W (2019) Stimulated Raman excited fluorescence spectroscopy and imaging. Nat Photonics 13:412–417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hee Shim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, SH. Super‐resolution microscopy of genome organization. Genes Genom 43, 281–287 (2021). https://doi.org/10.1007/s13258-021-01044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01044-9

Keywords

Navigation