Skip to main content

In Situ Super-Resolution Imaging of Genomic DNA with OligoSTORM and OligoDNA-PAINT

  • Protocol
Super-Resolution Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1663))

Abstract

OligoSTORM and OligoDNA-PAINT meld the Oligopaint technology for fluorescent in situ hybridization (FISH) with, respectively, Stochastic Optical Reconstruction Microscopy (STORM) and DNA-based Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) to enable in situ single-molecule super-resolution imaging of nucleic acids. Both strategies enable ≤20 nm resolution and are appropriate for imaging nanoscale features of the genomes of a wide range of species, including human, mouse, and fruit fly (Drosophila).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: Super-resolution imaging of cells. Cell 143:1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sengupta P, Van Engelenburg S, Lippincott-Schwartz J (2012) Visualizing cell structure and function with point-localization superresolution imaging. Dev Cell 23:1092–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson MA, Lew MD, Moerner WE (2012) Extending microscopic resolution with single-molecule imaging and active control. Ann Rev Biophys 41:321–342

    Article  CAS  Google Scholar 

  4. Godin AG, Lounis B, Cognet L (2014) Super-resolution microscopy approaches for live cell imaging. Biophys J 107:1777–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beliveau BJ, Boettiger AN, Avendaño MS, Jungmann R, McCole RB, Joyce EF, Kim-Kiselak C, Bantignies F, Fonseka CY, Erceg J, Hannan MA, Hoang HG, Colognori D, Lee JT, Shih WM, Yin P, Zhuang X, CT W (2015) Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun 6:7147. doi:10.1038/ncomms8147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, C-t W, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR, Rouillard JM, CT W (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Sci U S A 109:21301–21306

    Article  CAS  Google Scholar 

  8. Beliveau BJ, Apostolopoulos NA, Wu CT (2014) Visualizing genomes with Oligopaint FISH probes. Curr Protoc Mol Biol 105:Unit 14.23

    PubMed  Google Scholar 

  9. Rust M, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bates M, Huang B, Dempsey G, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharanov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103:18911–18916

    Article  Google Scholar 

  13. Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC (2010) Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10:4756–4761

    Article  CAS  PubMed  Google Scholar 

  14. Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods 11:313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bates M, Jones SA, Zhuang X (2010) Stochastic optical reconstruction microscopy (STORM) – a method for superresolution fluorescence imaging. In: Yuste R (ed) Imaging: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  16. Dai M, Jungmann R, Yin P (2016) Optical imaging of individual biomolecules in densely packed clusters. Nat Nanotechnol 11:798–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jungmann R, Avendaño MS, Dai M, Woehrstein JB, Agasti SS, Feiger Z, Rodal A, Yin P (2016) 2016 Quantitative super-resolution imaging with qPAINT. Nat Methods 13:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang S, J-H S, Beliveau BJ, Bintu B, Moffitt JR, CT W, Zhuang X (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:598–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94:108101

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murgha Y, Beliveau Bm Semrau K, Schwartz D, Wu CT, Gulari E, Rouillard JM (2015) Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries. BioTechniques 58:301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moffit JR, Zhuang X (2016) RNA imaging with multiplexed error-robust fluorescence in situ hybridization. Methods Enzymol 572:1–49

    Article  Google Scholar 

  24. Schmidt TL, Beliveau BJ, Uca YO, Theilmann M, Da Cruz F, CT W, Shih WM (2015) Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat Commun 6:8634. doi:10.1038/ncomms9634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olivier N, Keller D, Gönczy P, Manley S (2013) Resolution doubling in 3D-STORM imaging through improved buffers. PLoS One 8:e69004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aitken EC, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:826–183

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of the Wu, Zhuang, and Yin laboratories for extensive conversations and experience. This work was supported by grants from the NIH to the laboratories of C.-t W. (GM085169, DP1GM106412, RM1HG008525), X.Z. (R01GM105637), and P.Y. (1R01EB018659, 1-U01-MH106011), X.Z. is a Howard Hughes Medical Institute investigator. In addition, B.J.B. and A.N.B. were supported by Damon Runyon Postdoctoral Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Yin , Xiaowei Zhuang or C.-ting Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Beliveau, B.J. et al. (2017). In Situ Super-Resolution Imaging of Genomic DNA with OligoSTORM and OligoDNA-PAINT. In: Erfle, H. (eds) Super-Resolution Microscopy. Methods in Molecular Biology, vol 1663. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7265-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7265-4_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7264-7

  • Online ISBN: 978-1-4939-7265-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics