Skip to main content
Log in

Rheinic acid ameliorates radiation-induced acute enteritis in rats through PPAR-γ/NF-κB

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Acute radiation enteritis (ARE), a common complication of intestinal caused by abdominal and pelvic radiation therapy. Rheinic acid is a major active ingredient derived from Rhubarb. Rhubarb could suppress inflammation, tumor, fibrosis oxidative damage. However, RA as the main active component and extract monomer of Rhubarb, the pharmacological activity and the underlying molecular mechanism on various diseases has not yet been revealed.

Objective

To determine the potential role of rheinic acid (RA) in ameliorating inflammation of rats with acute radiation enteritis (ARE), and explore the underlying mechanism.

Methods

ARE rat model was established by irradiated with single-dose 10 Gy X-rays at a rate of 0.62 Gy/min to the abdomen. The rats were executed after orally administered with Rheinic acid 7 days and used in the subsequent experiments. Body weight, fecal characteristics and bloody of rats were used to assess the disease activity index. Histological analysis of the jejunum and colon were evaluated using H&E staining. The pro-inflammatory cytokines levels were measured by immunohistochemistry and ELISA. The levels of nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) were also determined. The mRNA and protein expression were examined by real-time polymerase chain reaction (qRT-PCR) and western blot, respectively.

Results

Rheinic acid promoted intestinal functional recovery, and ameliorated intestinal damage and bloody stool in ARE rats. Rheinic acid strongly decreased the levels of tumor necrosis factor-α, interleukin-1, interleukin-6, NO, and MDA, whereas increased levels of anti-oxidants, SOD and GSH. Moreover, the expression of apoptosis-related proteins, cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP), were decreased with RA treatment. Further study indicated that PPAR-γ was activated and thereby NF-κB and p38 MAPK signaling pathway were suppressed after rheinic acid treatment.

Conclusion

Rheinic acid could ameliorate acute radiation enteritis and the underlying molecular mechanism is, at least partially, through PPAR-γ/NF-κB and p38 MAPK/JNK pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akpolat M, Gulle K, Topcu-Tarladacalisir Y, Safi OZ, Bakkal BH, Arasli M, Ozel Turkcu U (2013) Protection by l-carnitine against radiation-induced ileal mucosal injury in the rat: pattern of oxidative stress, apoptosis and cytokines. Int J Radiat Biol 89:732–740

    Article  CAS  PubMed  Google Scholar 

  • Bassaganyariera J, Reynolds K, Martinocatt S, Cui Y, Hennighausen L, Gonzalez F, Rohrer J, Benninghoff AU, Hontecillas R (2004) Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–791

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Roy S (2019) Antigen conjugated nanoparticles reprogrammed the tumor-conditioned macrophages toward pro-immunogenic type through regulation of NADPH oxidase and p38MAPK. Cytokine 113:162–176

    Article  CAS  PubMed  Google Scholar 

  • Chi-Sheng S, Govindan S, Yu-Chi H, Yu-Chin L, Pei-Dawn Lee C, Shin-Hun J (2011) Suppression on metastasis by rhubarb through modulation on MMP-2 and uPA in human A549 lung adenocarcinoma: an ex vivo approach. J Ethnopharmacol 133:426–433

    Article  Google Scholar 

  • Davies M, Fulton G, Hagen PO (1995) Clinical biology of nitric oxide. Br J Surg 82:1598–1610

    Article  CAS  PubMed  Google Scholar 

  • Delerive P, Bosscher KD, Besnard S, Berghe WV, Peters JM, Gonzalez FJ, Fruchart JC, Tedgui A, Haegeman G, Staels B (1999) Peroxisome proliferator-activated receptor α-negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J Biol Chem 274:32048–32054

    Article  CAS  PubMed  Google Scholar 

  • Delerive P, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 169:453

    Article  CAS  PubMed  Google Scholar 

  • Delpino A, Paggi M, Gentile P, Castiglione S, Bruno T, Benass M, Floridi A (1992) Protein synthetic activity and adenylate energy charge in Rhein-treated cultured human glioma cells. Cancer Biochem Biophys 12:241–252

    CAS  PubMed  Google Scholar 

  • Dubuquoy L, Jansson EÅ, Deeb S, Rakotobe S, Karoui M, Colombel JF, Auwerx J, Pettersson S, Desreumaux P (2003) Impaired expression of peroxisome proliferator-activated receptor γ in ulcerative colitis ☆. Gastroenterology 124:1265–1276

    Article  CAS  PubMed  Google Scholar 

  • Erbil Y, Dibekoglu C, Turkoglu U, Ademoglu E, Berber E, Kizir A, Mercan S, Toker G (1998) Nitric oxide and radiation enteritis. Eur J Surg 164:863–868

    Article  CAS  PubMed  Google Scholar 

  • Garden AS (2003) Mucositis: current management and investigations. In: Seminars in radiation oncology, vol 3. Elsevier, Amsterdam, pp 267–273

  • Ge H, Tang H, Liang Y, Wu J, Yang Q, Zeng L, Ma Z (2017) Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo and in vitro. Drug Design Dev Ther 11:1663

    Article  CAS  Google Scholar 

  • Giriş M, Erbil Y, Oztezcan S, Olgaç V, Barbaros U, Deveci U, Kirgiz B, Uysal M, Toker GA (2006) The effect of heme oxygenase-1 induction by glutamine on radiation-induced intestinal damage: the effect of heme oxygenase-1 on radiation enteritis. Am J Surg 191:503–509

    Article  CAS  PubMed  Google Scholar 

  • Guan C, Xiao Y, Li K, Wang T, Liang Y, Liao G (2019) MMP-12 regulates proliferation of mouse macrophages via the ERK/P38 MAPK pathways during inflammation. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2019.03.018

    Article  PubMed  Google Scholar 

  • Han EJ, Im C-N, Park SH, Moon E-Y, Hong SH (2013) Combined treatment with peroxisome proliferator-activated receptor (PPAR) gamma ligands and gamma radiation induces apoptosis by PPARγ-independent up-regulation of reactive oxygen species-induced deoxyribonucleic acid damage signals in non-small cell lung cancer cells. Int J Radiat Oncol Biol Phys 85:e239–e248

    Article  CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2012) NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepgül G, Tanrıkulu S, Ünalp HR, Akguner T, Erbil Y, Olgaç V, Ademoğlu E (2010) Preventive effect of pentoxifylline on acute radiation damage via antioxidant and anti-inflammatory pathways. Dig Dis Sci 55:617–625

    Article  CAS  PubMed  Google Scholar 

  • Hontecillas R, Bassaganya-Riera J (2007) Peroxisome proliferator-activated receptor gamma is required for regulatory CD4+ T cell-mediated protection against colitis. J Immunol 178:2940–2949

    Article  CAS  PubMed  Google Scholar 

  • Hou Q, Liu L, Dong Y, Wu J, Du L, Dong H, Li DJ (2018) Effects of thymoquinone on radiation enteritis in mice. Sci Rep 8:15122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Jian MA, Yang CH, Bin LU, Ping GU, Shao JQ (2013) Hong DU (2013) Effects of rheinic acid on markers of insulin secretion, inflammation and oxidative injury in db/db mice. Chin Remedies Clin 13:976–979

    CAS  Google Scholar 

  • Iizuka A, Iijima OT, Kondo K, Itakura H, Yoshie F, Miyamoto H, Kubo M, Higuchi M, Takeda H (2004) Evaluation of Rhubarb using antioxidative activity as an index of pharmacological usefulness. J Ethnopharmacol 91:89–94

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wu XQ, Sun HF, Ji M (2008) Advance of biological activity of rhein and its derivatives. Pharmaceut Clin Res 16(2):125–128

    CAS  Google Scholar 

  • Kirsch DG, Santiago PM, di Tomaso E, Sullivan JM, Hou W-S, Dayton T, Jeffords LB, Sodha P, Mercer KL, Cohen R (2010) p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 327:593–596

    Article  CAS  PubMed  Google Scholar 

  • Kuo P-L, Hsu Y-L, Ng LT, Lin C-C (2004) Rhein inhibits the growth and induces the apoptosis of Hep G2 cells. Planta Med 70:12–16

    Article  CAS  PubMed  Google Scholar 

  • Langley R, Bump E, Quartuccio S, Medeiros D, Braunhut S (1997) Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer 75:666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linard C, Souidi M (2009) PPARs in irradiation-induced gastrointestinal toxicity. PPAR Res 2010, 528327

    PubMed  PubMed Central  Google Scholar 

  • Linard C, Marquette C, Mathieu J, Pennequin A, Clarençon D, Mathé D (2004) Acute induction of inflammatory cytokine expression after γ-irradiation in the rat: effect of an NF-κB inhibitor. Int J Radiat Oncol Biol Phys 58:427–434

    Article  CAS  PubMed  Google Scholar 

  • Linard C, Grémy O, Benderitter M (2008) Reduction of peroxisome proliferation-activated receptor gamma expression by gamma-irradiation as a mechanism contributing to inflammatory response in rat colon: modulation by the 5-aminosalicylic acid agonist. J Pharmacol Exp Ther 324:911–920

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Kageura T, Morikawa T, Toguchida I, Harima S, Bioorganic MYJ, Letters MC (2000) Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharide-activated macrophages. Bioorg Med Chem Lett 10:323–327

    Article  CAS  PubMed  Google Scholar 

  • Monti P, Wysocki J, Van der Meeren A, Griffiths N (2005) The contribution of radiation-induced injury to the gastrointestinal tract in the development of multi-organ dysfunction syndrome or failure. Br J Radiol 27:89–94

    Article  Google Scholar 

  • O’Neil J, Ammit A, Clark A (2018) Mapk p38 regulates inflammatory gene expression via tristetraprolin: doing good by stealth. Int J Biochem Cell Biol 94:6–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1997) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    Article  Google Scholar 

  • Shadad A, Sullivan F, Martin J, Egan LJ (2013a) Gastrointestinal radiation injury: prevention and treatment. World J Gastroenterol 19:199–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadad A, Sullivan F, Martin J, Egan LJ (2013b) Gastrointestinal radiation injury: symptoms, risk factors and mechanisms. World J Gastroenterol 19:185–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Somosy Z, Horvath G, Telbisz A, Rez G, Palfia Z (2002) Morphological aspects of ionizing radiation response of small intestine. Micron 33:167–178

    Article  CAS  PubMed  Google Scholar 

  • Strup-Perrot C, Vozenin-Brotons M-C, Vandamme M, Benderitter M, Mathe D (2006) Expression and activation of MMP-2,-3,-9,-14 are induced in rat colon after abdominal X-irradiation. Scand J Gastroenterol 41:60–70

    Article  CAS  PubMed  Google Scholar 

  • Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S (2002) p38 mitogen-activated protein kinase is activated and linked to TNF-α signaling in inflammatory bowel disease. J Immunol 168:5342–5351

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto-Furusho JK, Azucena PAC, Fausto SMO, Rafael BZI, Aarón DLJIBD (2011) Peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression is downregulated in patients with active ulcerative colitis. Inflamm Bowel Dis 17:680–681

    Article  PubMed  Google Scholar 

  • Zand H, Rahimipour A, Salimi S, Shafiee SM (2008) Docosahexaenoic acid sensitizes Ramos cells to Gamma-irradiation-induced apoptosis through involvement of PPAR-γ activation and NF-κB suppression. Mol Cell Biochem 317:113–120

    Article  CAS  PubMed  Google Scholar 

  • Zeng C, Xiao J-H, Chang M-J, Wang J-L (2011) Beneficial effects of THSG on acetic acid-induced experimental colitis: involvement of upregulation of PPAR-γ and inhibition of the Nf-Κb inflammatory pathway. Molecules 16:8552–8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZH, Wei F, Vaziri ND, Cheng XL, Bai X, Lin RC, Zhao YY (2015) Metabolomics insights into chronic kidney disease and modulatory effect of rhubarb against tubulointerstitial fibrosis. Sci Rep 5:14472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X-F, Huang G-D, Luo T, Deng Z-Y, Hu J-N (2012) Protective effect of rhein against oxidative stress-related endothelial cell injury. Mol Med Rep 5:1261–1266

    CAS  PubMed  Google Scholar 

  • Zhuang S, Zhong J, Bian Y, Fan Y, Chen Q, Liu P, Liu Z (2019) Rhein ameliorates lipopolysaccharide-induced intestinal barrier injury via modulation of Nrf2 and MAPKs. Life Sci 216:168–175

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Jiangsu Province Hospital of Chinese Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Gu or Weimin Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests, and all authors should confirm its accuracy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, H., Gu, Y., Shen, W. et al. Rheinic acid ameliorates radiation-induced acute enteritis in rats through PPAR-γ/NF-κB. Genes Genom 41, 909–917 (2019). https://doi.org/10.1007/s13258-019-00824-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00824-8

Keywords

Navigation