Skip to main content
Log in

Microsatellite DNA analysis reveals lower than expected genetic diversity in the threatened leopard cat (Prionailurus bengalensis) in South Korea

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

To optimize conservation efforts, it is necessary to determine the risk of extinction by collecting reliable population information for a given species. We developed eight novel, polymorphic microsatellite markers and used these markers in conjunction with twelve existing markers to measure genetic diversity of South Korean populations of leopard cat (Prionailurus bengalensis), a species for which population size and habitat area data are unknown in the country, to assess its conservation status. The average number of alleles and the observed heterozygosity of the species were 3.8 and 0.41, respectively, and microsatellite diversity was lower than the average genetic diversity of 57 populations of 12 other felid species, and lower than that of other mammal populations occurring in South Korea, including the raccoon dog (Nyctereutes procyonoides), water deer (Hydropotes inermis), and endangered long-tailed goral (Naemorhedus caudatus). Furthermore, analysis of genetic structure in the national leopard cat population showed no clear genetic differentiation, suggesting that it is not necessary to divide the South Korean leopard cat population into multiple management units for the purposes of conservation. These results indicate that the genetic diversity of the leopard cat in South Korea is unexpectedly low, and that the risk of local extinction is, as a result, substantial. Thus, it is necessary to begin appropriate conservation efforts at a national level to conserve the leopard cat population in South Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson Jr CR, Lindzey FG, McDonald DB (2004) Genetic structure of cougar populations across the Wyoming Basin: metapopulation or megapopulation. J Mammal 85:1207–1214

    Article  Google Scholar 

  • Antunes A, Troyer JL, Roelke ME, Pecon-Slattery J, Packer C, Winterbach C, Winterbach H, Hemson G, Frank L, Stander P (2008) The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics. PLoS genetics 4:e1000251

    Article  PubMed  PubMed Central  Google Scholar 

  • Baillie J, Hilton-Taylor C, Stuart SN (2004) 2004 IUCN red list of threatened species: a global species assessment. IUCN, Gland

    Google Scholar 

  • Bang S, Ahn S (2005) Development of red list categories and criteria for the protection of Endangered Species in Korea. Korea Environment Institute, Seoul

    Google Scholar 

  • Buckley-Beason VA, Johnson WE, Nash WG, Stanyon R, Menninger JC, Driscoll CA, Howard J, Bush M, Page JE, Roelke ME (2006) Molecular evidence for species-level distinctions in clouded leopards. Current Biology 16:2371–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296:904–907

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Lee H, Park T, Kim H (2005) Reconsideration of rare and endangered plant species in Korea based on the IUCN Red List categories. Korean J Ecol 28:305–320

    Article  Google Scholar 

  • Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  • Choi T (2007) Road-kill mitigation strategies for mammals in Korea: data based on surveys of road-kill, non-wildlife passage use, and home-range. PhD Dissertation, Seoul National University

  • Choi T, Kwon H, Woo D, Park C (2012) Habitat selection and management of the leopard cat (Prionailurus bengalensis) in a rural area of Korea. Korean J Environ Ecol 26:322–332

    Google Scholar 

  • Choi SK, Chun S, An J, Lee M, Kim HJ, Min M, Kwon S, Choi TY, Lee H, Kim KS (2015) Genetic diversity and population structure of the long-tailed goral, Naemorhedus caudatus, in South Korea. Genes Genet Syst 90:31–41

    Article  CAS  PubMed  Google Scholar 

  • Dalton DL, Charruau P, Boast L, Kotzé A (2013) Social and genetic population structure of free-ranging cheetah in Botswana: implications for conservation. Eur J Wildl Res 59:281–285

    Article  Google Scholar 

  • Doyle JM, Hacking CC, Willoughby JR, Sundaram M, DeWoody JA (2015) Mammalian genetic diversity as a function of habitat, body size, trophic class, and conservation status. J Mammal 96:564–572

    Article  Google Scholar 

  • Dutta T, Sharma S, Maldonado JE, Wood TC, Panwar H, Seidensticker J (2013) Fine-scale population genetic structure in a wide-ranging carnivore, the leopard (Panthera pardus fusca) in central India. Divers Distrib 19:760–771

    Article  Google Scholar 

  • Eo SH, Ko BJ, Lee B, Seomun H, Kim S, Kim M, Kim JH, An J (2016a) A set of microsatellite markers for population genetics of leopard cat (Prionailurus bengalensis) and cross-species amplification in other felids. Biochem Syst Ecol 66:196–200

    Article  CAS  Google Scholar 

  • Eo SH, Lee W, Lee B, Ko BJ, Kim JU, Jeon JH (2016b) Microsatellite markers for the Ussuri white-toothed shrew (Soricidae: Crocidura lasiura) developed by Ion Torrent sequencing and their application to the shrew populations in disturbed forests. Genes Genom 38:351–357

    Article  Google Scholar 

  • Epps CW, Palsbøll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Evans SR, Sheldon BC (2008) Interspecific patterns of genetic diversity in birds: correlations with extinction risk. Conserv Biol 22:1016–1025

    Article  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    Article  CAS  PubMed  Google Scholar 

  • Faircloth BC, Reid A, Valentine T, Eo SH, Terhune TM, Glenn TC, Palmer WE, Nairn CJ, Carroll JP (2005) Tetranucleotide, trinucleotide, and dinucleotide loci from the bobcat (Lynx rufus). Mol Ecol Resour 5:387–389

    Article  CAS  Google Scholar 

  • Frankham R (2012) How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity 108:167–178

    Article  CAS  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frankham R, Bradshaw CJ, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Garner A, Rachlow JL, Hicks JF (2005) Patterns of genetic diversity and its loss in mammalian populations. Conserv Biol 19:1215–1221

    Article  Google Scholar 

  • Gaur A, Shailaja K, Singh A, Arunabala V, Satyarebala B, Singh L (2006) Twenty polymorphic microsatellite markers in the Asiatic lion (Panthera leo persica). Conserv Genet 7:1005–1008

    Article  CAS  Google Scholar 

  • Gottelli D, Wang J, Bashir S, Durant SM (2007) Genetic analysis reveals promiscuity among female cheetahs. Proc Biol Sci 274:1993–2001

    Article  PubMed  PubMed Central  Google Scholar 

  • Haag T, Santos A, Sana D, Morato R, Cullen Jr L, Crawshaw Jr P, De Angelo C, Di Bitetti M, Salzano F, Eizirik E (2010) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol Ecol 19:4906–4921

    Article  CAS  PubMed  Google Scholar 

  • Hellborg L, Walker CW, Rueness EK, Stacy JE, Kojola I, Valdmann H, Vilà C, Zimmermann B, Jakobsen KS, Ellegren H (2002) Differentiation and levels of genetic variation in northern European lynx (Lynx lynx) populations revealed by microsatellites and mitochondrial DNA analysis. Conserv Genet 3:97–111

    Article  CAS  Google Scholar 

  • Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531

    Article  Google Scholar 

  • Hong Y, Kim K, Lee H, Min M (2013) Population genetic study of the raccoon dog (Nyctereutes procyonoides) in South Korea using newly developed 12 microsatellite markers. Genes Genet Syst 88:69–76

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee BC, Kim YS, Chang C (2012) Critiques of the endangered and protected wild species list in Korea’ proposed by Korea Ministry of Environment and listing process-Is this the best process for the current national management of endangered wildlife and plants in Korea?- J Korean For Soc 101:7–19

    Article  Google Scholar 

  • Lee BH, Won CM, Cho YS, Han SH (2008) Taxonomy status and geographic variations of Prionailurus Bengalenesis in Korea. National Institute of Biological Resources, Incheon, Incheon

    Google Scholar 

  • Lee YS, Choi SK, An J, Park HC, Kim SI, Min MS, Kim KS, Lee H (2011) Isolation and characterization of 12 microsatellite loci from Korean water deer (Hydropotes inermis argyropus) for population structure analysis in South Korea. Genes Genom 33:535–540

    Article  Google Scholar 

  • Mattucci F, Oliveira R, Bizzarri L, Vercillo F, Anile S, Ragni B, Lapini L, Sforzi A, Alves P, Lyons L, Randi E (2013) Genetic structure of wildcat (Felis silvestris) populations in Italy. Ecol Evol 3:2443–2458

    Article  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim H, Chang C (2013) Assessing red list categories to a Korean endangered species based on IUCN criteria-Hanabusaya asiatica (Nakai) Nakai. Korean J Plant Taxon 43:128–138

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39

    Article  PubMed  Google Scholar 

  • Rivers MC, Brummitt NA, Lughadha EN, Meagher TR (2014) Do species conservation assessments capture genetic diversity? Glob Ecol Conserv 2:81–87

    Article  Google Scholar 

  • Rodrigues AS, Pilgrim JD, Lamoreux JF, Hoffmann M, Brooks TM (2006) The value of the IUCN Red List for conservation. Trends Ecol Evol 21:71–76

    Article  PubMed  Google Scholar 

  • Rodzen JA, Banks J, Meredith E, Jones K (2007) Characterization of 37 microsatellite loci in mountain lions (Puma concolor) for use in forensic and population applications. Conserv Genet 8:1239–1241

    Article  Google Scholar 

  • Ross J, Brodie J, Cheyne S, Hearn A, Izawa M, Loken B, Lynam A, McCarthy J, Mukherjee S, Phan C, Rasphone A, Wilting A (2015) Prionailurus bengalensis. The IUCN Red List of Threatened Species 2015: e. T18146A50661611

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  • Rueness EK, Stenseth NC, O'donoghue M, Boutin S, Ellegren H, Jakobsen KS (2003) Ecological and genetic spatial structuring in the Canadian lynx. Nature 425:69–72

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K, Kowalczyk R, Ozolins J, Männil P, Fickel J (2009) Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic states. Conserv Genet 10:497–501

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Stuckas H, Moll K, Khan I, Bhaskar R, Goyal S, Tiedemann R (2008) Fourteen new di-and tetranucleotide microsatellite loci for the critically endangered Indian tiger (Panthera tigris tigris). Mol Ecol Resour 8:1480–1482

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spong G, Johansson M, Björklund M (2000) High genetic variation in leopards indicates large and long-term stable effective population size. Mol Ecol 9:1773–1782

    Article  CAS  PubMed  Google Scholar 

  • Steffens DL, Sutter SL, Roemer SC (1993) An alternate universal forward primer for improved automated DNA sequencing of M13. BioTechniques 15:580–582

    Google Scholar 

  • Traill LW, Bradshaw CJ, Brook BW (2007) Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol Conserv 139:159–166

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Waits LP, Buckley-Beason VA, Johnson WE, Onorato D, McCarthy T (2007) A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia). Mol Ecol Resour 7:311–314

    Article  CAS  Google Scholar 

  • Wiseman R, O’Ryan C, Harley E (2000) Microsatellite analysis reveals that domestic cat (Felis catus) and southern African wild cat (F. lybica) are genetically distinct. Anim Conserv Forum 3:221–228

    Article  Google Scholar 

  • Won C, Smith KG (1999) History and current status of mammals of the Korean Peninsula. Mamm Rev 29:3–36

    Article  Google Scholar 

  • Wu J, Lei Y, Fang S, Wan Q (2009) Twenty-one novel tri-and tetranucleotide microsatellite loci for the Amur tiger (Panthera tigris altaica). Conserv Genet 10:567–570

    Article  CAS  Google Scholar 

  • Yashima AS, Innan H (2016) VarVer: a database of microsatellite variation in vertebrates. Mol Ecol Resour 17:824–833

    Article  PubMed  Google Scholar 

  • Youngquist MB, Inoue K, Berg DJ, Boone MD (2017) Effects of land use on population presence and genetic structure of an amphibian in an agricultural landscape. Landsc Ecol 32:147–162

    Article  Google Scholar 

  • Zhang Z, Zhang W, Yue B, Shen F, Zhang L, Hou R, Zhu M (2006) Twelve polymorphic microsatellite loci for the South China tiger Panthera tigris amoyensis. Mol Ecol Resour 6:24–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Eo lab for their comments on the manuscript. This work was supported by a grant from the Kongju National University in 2013 and a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR201603103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Hyung Eo.

Ethics declarations

Conflict of interest

Byung June Ko, Junghwa An, Hong Seomun, Mu-Yeong Lee, and Soo Hyung Eo declares that they have no conflict of interest.

Ethical approval

All animal experiments throughout the study were conducted in accordance with guidelines of The Ministry of Environment for the care and use of animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, B.J., An, J., Seomun, H. et al. Microsatellite DNA analysis reveals lower than expected genetic diversity in the threatened leopard cat (Prionailurus bengalensis) in South Korea. Genes Genom 40, 521–530 (2018). https://doi.org/10.1007/s13258-018-0654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0654-8

Keywords

Navigation