Skip to main content
Log in

Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Estimating animal distributions and abundances over large regions is of primary interest in ecology and conservation. Specifically, integrating data from reliable but expensive surveys conducted at smaller scales with cost-effective but less reliable data generated from surveys at wider scales remains a central challenge in statistical ecology. In this study, we use a Bayesian smoothing technique based on a conditionally autoregressive (CAR) prior distribution and Bayesian regression to address this problem. We illustrate the utility of our proposed methodology by integrating (i) abundance estimates of tigers in wildlife reserves from intensive photographic capture–recapture methods, and (ii) estimates of tiger habitat occupancy from indirect sign surveys, conducted over a wider region. We also investigate whether the random effects which represent the spatial association due to the CAR structure have any confounding effect on the fixed effects of the regression coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical modeling and analysis for spatial data, Monographs on Statistics and Applied Probability, vol. 135, second edn. CRC Press, Boca Raton, F.L. (2015)

  • Banerjee, S., Finley, A.O., Waldmann, P., Ericsson, T.: Hierarchical spatial process models for multiple traits in large genetic trials. Journal of the American Statistical Association 105(490), 506–521 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee, S., Gelfand, A.: Prediction, interpolation and regression for spatially misaligned data. Sankhyā: The Indian Journal of Statistics, Series A pp. 227–245 (2002)

  • Banerjee, S., Gelfand, A.E., Finley, A.O., Sang, H.: Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70(4), 825–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Besbeas, P., Freeman, S.N., Morgan, B.J.T., Catchpole, E.A.: Integrating mark–recapture–recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58(3), 540–547 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Blanc, L., Marboutin, E., Gatti, S., Zimmermann, F., Gimenez, O.: Improving abundance estimation by combining capture–recapture and occupancy data: example with a large carnivore. Journal of Applied Ecology 51(6), 1733–1739 (2014)

    Article  Google Scholar 

  • Borchers, D.L., Efford, M.G.: Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies. Biometrics 64(2), 377–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Bradley, J.R., Holan, S.H., Wikle, C.K.: Multivariate spatio-temporal models for high-dimensional areal data with application to longitudinal employer-household dynamics. The Annals of Applied Statistics 9(4), 1761–1791 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Brooks, S.P., King, R., Morgan, B.J.T.: A Bayesian approach to combining animal abundance and demographic data. Animal Biodiversity and Conservation 27(1), 515–529 (2004)

    Google Scholar 

  • Brown, P.J., Le, N.D., Zidek, J.V.: Multivariate spatial interpolation and exposure to air pollutants. Canadian Journal of Statistics 22(4), 489–509 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L.: Introduction to distance sampling estimating abundance of biological populations. Oxford University Press (2001)

  • Buckland, S.T., Newman, K.B., Fernández, C., Thomas, L., Harwood, J.: Embedding population dynamics models in inference. Statistical Science pp. 44–58 (2007)

  • Buckland, S.T., Newman, K.B., Thomas, L., Koesters, N.B.: State-space models for the dynamics of wild animal populations. Ecological Modelling 171(1), 157–175 (2004)

    Article  Google Scholar 

  • Carlin, B.P., Banerjee, S.: Hierarchical multivariate CAR models for spatio-temporally correlated survival data. Bayesian statistics 7, 45–63 (2003)

    MathSciNet  Google Scholar 

  • Chandler, R.B., Clark, J.D.: Spatially explicit integrated population models. Methods in Ecology and Evolution 5(12), 1351–1360 (2014). doi:10.1111/2041-210X.12153

    Article  Google Scholar 

  • Chandler, R.B., Royle, J.A.: Spatially explicit models for inference about density in unmarked or partially marked populations. The Annals of Applied Statistics 7(2), 936–954 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Clayton, D., Kaldor, J.: Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics 43(3), 671–681 (1987)

    Article  Google Scholar 

  • Clayton, D.G., Bernardinelli, L., Montomoli, C.: Spatial correlation in ecological analysis. International Journal of Epidemiology 22(6), 1193–1202 (1993)

    Article  Google Scholar 

  • Conroy, M.J., Runge, J.P., Barker, R.J., Schofield, M.R., Fonnesbeck, C.J.: Efficient estimation of abundance for patchily distributed populations via two-phase, adaptive sampling. Ecology 89(12), 3362–3370 (2008)

    Article  Google Scholar 

  • Delampady, M., Yee, I.M.L., Zidek, J.V.: Hierarchical Bayesian analysis of a discrete time series of Poisson counts. Statistics and Computing 3(1), 7–15 (1993)

    Article  Google Scholar 

  • Fuentes, M.: Interpolation of nonstationary air pollution processes: a spatial spectral approach. Statistical Modelling 2(4), 281–298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Fuentes, M., Raftery, A.E.: Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61(1), 36–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A.E., Kim, H.J., Sirmans, C., Banerjee, S.: Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association 98(462), 387–396 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A.E., Vounatsou, P.: Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4(1), 11–15 (2003)

    Article  MATH  Google Scholar 

  • Gelfand, A.E., Zhu, L., Carlin, B.P.: On the change of support problem for spatio-temporal data. Biostatistics 2(1), 31–45 (2001)

    Article  MATH  Google Scholar 

  • George, E.I., Robert, C.P.: Capture–recapture estimation via Gibbs sampling. Biometrika 79(4), 677–683 (1992)

    MathSciNet  MATH  Google Scholar 

  • Ghosh, J.K., Delampady, M., Samanta, T.: An Introduction to Bayesian Analysis, Theory and Methods. Springer Texts in Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  • Ghosh, S., Gelfand, A.E., Clark, J.S.: Inference for size demography from point pattern data using integral projection models. Journal of agricultural, biological, and environmental statistics 17(4), 641–677 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Gopalaswamy, A.M., Delampady, M., Karanth, K.U., Kumar, N., Macdonald, D.W.: An examination of index-calibration experiments: counting tigers at macroecological scales. Methods in Ecology and Evolution. (2015). doi:10.1111/2041-210X.12351

  • Gopalaswamy, A.M., Royle, J.A., Hines, J.E., Singh, P., Jathanna, D., Kumar, N.S., Karanth, K.U.: Program SPACECAP: software for estimating animal density using spatially explicit capture–recapture models. Methods in Ecology and Evolution 3(6), 1067–1072 (2012)

    Article  Google Scholar 

  • Hanks, E.M., Schliep, E.M., Hooten, M.B., Hoeting, J.A.: Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification. Environmetrics 26(4), 243–254 (2015)

    Article  MathSciNet  Google Scholar 

  • Hedley, S.L., Buckland, S.T.: Spatial models for line transect sampling. Journal of Agricultural, Biological, and Environmental Statistics 9(2), 181–199 (2004)

    Article  Google Scholar 

  • Hines, J.E.: Presence2 – Software to estimate patch occupancy and related parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html. (Version 2.4) (2006)

  • Hines, J.E., Nichols, J.D., Royle, J.A., MacKenzie, D.I., Gopalaswamy, A.M., Kumar, N.S., Karanth, K.U.: Tigers on trails: occupancy modeling for cluster sampling. Ecological Applications 20(5), 1456–1466 (2010)

    Article  Google Scholar 

  • Hodges, J.S., Reich, B.J.: Adding spatially-correlated errors can mess up the fixed effect you love. The American Statistician 64(4), 325–334 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes, J., Haran, M.: Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 75(1), 139–159 (2013)

    Article  MathSciNet  Google Scholar 

  • Jhala, Y.V., Qureshi, Q., Gopal, R.: Can the abundance of tigers be assessed from their signs? Journal of Applied Ecology 48(1), 14–24 (2011)

    Article  Google Scholar 

  • Jhala, Y.V., Qureshi, Q., Gopal, R.: The status of tigers in India, 2014. TR2015/021. National Tiger Conservation Authority, New Delhi and The Wildlife Institute of India, Dehradun (2015)

  • Kang, E.L., Cressie, N., Sain, S.R.: Combining outputs from the North American regional climate change assessment program by using a Bayesian hierarchical model. Journal of the Royal Statistical Society: Series C (Applied Statistics) 61(2), 291–313 (2012)

    Article  MathSciNet  Google Scholar 

  • Karanth, K.U., Gopalaswamy, A.M., Kumar, N.S., Vaidyanathan, S., Nichols, J.D., MacKenzie, D.I.: Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. Journal of Applied Ecology 48(4), 1048–1056 (2011)

    Article  Google Scholar 

  • Karanth, K.U., Nichols, J.D., Kumar, N.S., Link, W.A., Hines, J.E.: Tigers and their prey: predicting carnivore densities from prey abundance. Proceedings of the National Academy of Sciences of the United States of America 101(14), 4854–4858 (2004)

    Article  Google Scholar 

  • Kibria, B.M.G., Sun, L., Zidek, J.V., Le, N.D.: Bayesian spatial prediction of random space-time fields with application to mapping pm2. 5 exposure. Journal of the American Statistical Association 97(457), 112–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Le, N.D., Sun, L., Zidek, J.V.: Spatial prediction and temporal backcasting for environmental fields having monotone data patterns. Canadian Journal of Statistics 29(4), 529–554 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Le, N.D., Zidek, J.V.: Interpolation with uncertain spatial covariances: a bayesian alternative to kriging. Journal of Multivariate Analysis 43(2), 351–374 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Linden, D.W., Fuller, A.K., Royle, J.A., Hare, M.P.: Examining the occupancy-density relationship for a low density carnivore. bioRxiv p. 066662 (2016)

  • MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A., Langtimm, C.A.: Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8), 2248–2255 (2002)

    Article  Google Scholar 

  • MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock Kenneth, H., Bailey, L.L., Hines, J.E.: Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Academic Press (2006)

  • Martin, J., Edwards, H.H., Fonnesbeck, C.J., Koslovsky, S.M., Harmak, C.W., Dane, T.M.: Combining information for monitoring at large spatial scales: first statewide abundance estimate of the florida manatee. Biological Conservation 186, 44–51 (2015)

    Article  Google Scholar 

  • May, R.: Unanswered questions in ecology. Philosophical Transactions of the Royal Society B: Biological Sciences 354(1392), 1951–1959 (1999)

    Article  Google Scholar 

  • Nguyen, H., Cressie, N., Braverman, A.: Spatial statistical data fusion for remote sensing applications. Journal of the American Statistical Association 107(499), 1004–1018 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Reich, B.J., Fuentes, M.: A multivariate semiparametric Bayesian spatial modeling framework for hurricane surface wind fields. The Annals of Applied Statistics pp. 249–264 (2007)

  • Reich, B.J., Hodges, J.S., Zadnik, V.: Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics 62(4), 1197–1206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Royle, J.A., Karanth, K.U., Gopalaswamy, A.M., Kumar, N.S.: Bayesian inference in camera trapping studies for a class of spatial capture-recapture models. Ecology 90(11), 3233–3244 (2009)

    Article  Google Scholar 

  • Royle, J.A., Nichols, J.D.: Estimating abundance from repeated presence-absence data or point counts. Ecology 84(3), 777–790 (2003)

    Article  Google Scholar 

  • Royle, J.A., Young, K.V.: A hierarchical model for spatial capture-recapture data. Ecology 89(8), 2281–2289 (2008)

    Article  Google Scholar 

  • Schaub, M., Gimenez, O., Sierro, A., Arlettaz, R.: Use of integrated modeling to enhance estimates of population dynamics obtained from limited data. Conservation Biology 21(4), 945–955 (2007)

    Article  Google Scholar 

  • Smith, R.L., Tebaldi, C., Nychka, D., Mearns, L.O.: Bayesian modeling of uncertainty in ensembles of climate models. Journal of the American Statistical Association 104(485), 97–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, T.R., Wakefield, J., Dobra, A.: Restricted covariance priors with applications in spatial statistics. Bayesian analysis (Online) 10(4), 965 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Srivathsa, A., Karanth, K.K., Jathanna, D., Kumar, N.S., Karanth, K.U.: On a dhole trail: examining ecological and anthropogenic correlates of dhole habitat occupancy in the western ghats of India. PloS one 9(6), e98,803 (2014)

  • Thompson, S.K.: Sampling, second edn. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], New York (2002)

  • Williams, B.K., Nichols, J.D., Conroy, M.J.: Analysis and management of animal populations. Academic Press (2002)

  • Zidek, J.V., Le, N.D., Liu, Z.: Combining data and simulated data for space–time fields: application to ozone. Environmental and ecological statistics 19(1), 37–56 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the associate editor and two anonymous referees for bringing to our attention some very relevant and important literature, as well as for helping us improve the presentation. We thank James Nichols and Arjun Gopalaswamy for very useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Delampady.

Appendices

Appendix 1: Empirical Bayes Results

An empirical Bayes version of the hierarchical Bayes estimate stated in Proposition 2.1 is given below.

Proposition 5.1

An empirical Bayes estimate of \(\mathbf {\nu }^S\) and an empirical Bayes estimate of its covariance matrix are given by

$$\begin{aligned} \hat{\mathbf {\nu }}_{EB}^S= & {} \hat{\delta }^2 Q_{21}(\hat{\rho })\bigl (\hat{\sigma }^2 I_{k_1} + \hat{\delta }^2 Q_1(\hat{\rho })\bigr )^{-1}\hat{\mathbf {\nu }}(ct)\nonumber \\&+\, (\mathbf {X}^S - \hat{\delta }^2 Q_{21}(\hat{\rho })\bigl (\hat{\sigma }^2 I_{k_1} + \hat{\delta }^2 Q_1(\hat{\rho })\bigr )^{-1} \mathbf {X}^T)\hat{\mathbf {\beta }}, \end{aligned}$$
(5.1)
$$\begin{aligned} \hat{Cov}_{EB}(\mathbf {\nu }^S)= & {} \hat{\delta }^2 Q_2(\hat{\rho }) - \hat{\delta }^4 Q_{21}(\hat{\rho }) \bigl (\hat{\sigma }^2 I_{k_1} + \hat{\delta }^2 Q_1(\hat{\rho })\bigr )^{-1} Q_{12}(\hat{\rho }). \end{aligned}$$
(5.2)

Proof

Note that (2.5) yields an empirical Bayes likelihood function for \((\sigma ^2, \mathbf {\beta }, \delta ^2, \rho )\). Therefore, these parameters can be estimated by maximizing this likelihood function and obtaining the required MLE, \((\hat{\sigma }^2, \hat{\mathbf {\beta }}, \hat{\delta }^2, \hat{\rho })\). From (2.7), it follows that

$$\begin{aligned} E(\mathbf {\nu }^S | \hat{\mathbf {\nu }}(ct), \sigma ^2, \mathbf {\beta }, \delta ^2,\rho )= & {} \mathbf {X}^S\mathbf {\beta } + \delta ^2 Q_{21}(\rho )\bigl (\sigma ^2 I_{k_1} + \delta ^2 Q_1(\rho ) \bigr )^{-1}(\hat{\mathbf {\nu }}(ct) - \mathbf {X}^T\mathbf {\beta }) \nonumber \\= & {} \delta ^2 Q_{21}(\rho )\bigl (\sigma ^2 I_{k_1} + \delta ^2 Q_1(\rho )\bigr )^{-1}\hat{\mathbf {\nu }}(ct)\nonumber \\&+\, (\mathbf {X}^S - \delta ^2 Q_{21}(\rho )\bigl (\sigma ^2 I_{k_1} + \delta ^2 Q_1(\rho ) \bigr )^{-1} \mathbf {X}^T)\mathbf {\beta }. \end{aligned}$$
(5.3)

Substituting \((\sigma ^2, \mathbf {\beta }, \delta ^2,\rho )\) by \((\hat{\sigma }^2, \hat{\mathbf {\beta }}, \hat{\delta }^2, \hat{\rho })\) yields the desired empirical Bayes estimate. Similarly, since \(Cov(\mathbf {\nu }^S | \hat{\mathbf {\nu }}(ct), \sigma ^2, \mathbf {\beta }, \delta ^2,\rho ) = \delta ^2 Q_2(\rho ) - \delta ^4 Q_{21}(\rho )\bigl (\sigma ^2 I_{k_1} + \delta ^2 Q_1(\rho )\bigr )^{-1} Q_{12}(\rho )\), substitution as before gives the empirical Bayes estimate of the covariance matrix. \(\square \)

Proposition 5.2

An empirical Bayes approximation for the estimates of abundance and its variance are, respectively, \(\hat{A}_{EB} = \sum _{i=1}^{k_1+k_2} e^{\hat{\mu }_i + \hat{P}_{ii}/2}\) and \(\hat{Var}_{EB}(A) = \sum _{i=1}^{k_1+k_2} e^{2\hat{\mu }_i +\hat{P}_{ii}} \bigl (e^{\hat{P}_{ii}}-1\bigr ) + \sum _{i\ne j} e^{\hat{\mu }_i + \hat{\mu }_j + (\hat{P}_{ii}+\hat{P}_{jj})/2} \bigl (e^{\hat{P}_{ij}}-1\bigr )\),

where \(\hat{\mu }_i = \mu _i(\hat{\sigma }^2, \hat{\mathbf {\beta }}, \hat{\delta }^2, \hat{\rho }),\, \hat{P}_{ij} = P_{ij}(\hat{\sigma }^2, \hat{\mathbf {\beta }}, \hat{\delta }^2, \hat{\rho }).\)

This follows from (2.2), arguing as above.

Appendix 2: Supplementary Material: Results for the Constrained Model

1.1 Posterior Quantities Under the Constrained Model

Following Reich et al. (2006), we set \(\theta _1=0\) in (3.4) to alleviate collinearity. Then the model becomes

$$\begin{aligned} \hat{\nu }(ct) = \nu ^T + \epsilon , \, \nu ^T=\mathbf {X}^T \mathbf {\beta } + L^{\prime } \theta _2, \end{aligned}$$
(5.4)

where \(\epsilon \sim N_{k_1}(\mathbf {0}, \tau _e I_{k_1})\), \(\theta _2 |\tau _s \sim N_{k_1-r}(\mathbf {0}, \tau _s \widetilde{V}_{22})\), \(\widetilde{V}_{22}= L V L^\prime \) and \(\mathbf {X}^T\) is the matrix of covariates for the camera trap sites. \(\mathbf {\beta }\) is given a flat prior and \(\tau _e\), \(\tau _s\) are given independent Gamma(0.01, 0.01) priors. The joint posterior distribution can then be expressed as:

$$\begin{aligned} \pi (\mathbf {\beta }, \theta _2, \tau _s, \tau _e | \hat{\nu }(ct))&= \pi (\mathbf {\beta }, \theta _2 | \hat{\nu }(ct), \tau _s, \tau _e) \,\pi (\tau _s, \tau _e | \hat{\nu }(ct))\\&\quad \propto f(\hat{\nu }(ct) | \mathbf {\beta }, \theta _2, \tau _e)\, \pi (\mathbf {\beta })\, \pi ( \theta _2 | \tau _s)\, \pi (\tau _s)\, \pi (\tau _e). \end{aligned}$$

Note that the exponent of the expression above reduces to

$$\begin{aligned}&\tau _e(\hat{\nu }(ct) - \mathbf {X}^T \mathbf {\beta } - L^\prime \theta _2)^\prime \, (\hat{\nu }(ct) - \mathbf {X}^T \mathbf {\beta } - L^\prime \theta _2) + \tau _s \theta _2^{\prime } \widetilde{V}_{22} \theta _2\\&= \tau _e \mathbf {\beta }^\prime {\mathbf {X}^T}^\prime \mathbf {X}^T \mathbf {\beta } + \tau _e {\theta _2}^{\prime } L L^{\prime } \theta _2 + 2 \tau _e \mathbf {\beta }^\prime {\mathbf {X}^T}^\prime L^{\prime } \theta _2 - 2 \tau _e \begin{pmatrix} \mathbf {\beta } \\ \theta _2 \end{pmatrix}^{\prime } \begin{pmatrix} {\mathbf {X}^T}^{\prime } \\ L \end{pmatrix} \hat{\nu }(ct) \\&\qquad + \tau _e \hat{\nu }(ct)^{\prime } \hat{\nu }(ct) + \tau _s \theta _2^{\prime } \widetilde{V}_{22} \theta _2\\&= \begin{pmatrix} \mathbf {\beta } \\ \theta _2 \end{pmatrix}^\prime \begin{Bmatrix} \tau _e {\mathbf {X}^T}^{\prime } {\mathbf {X}^T}&0 \\ 0&\tau _e I_{k_1-r}+ \tau _s \widetilde{V}_{22} \end{Bmatrix} \begin{pmatrix} \mathbf {\beta } \\ \theta _2 \end{pmatrix} - 2 \tau _e \begin{pmatrix} \mathbf {\beta } \\ \theta _2 \end{pmatrix}^{\prime } \begin{pmatrix} {\mathbf {X}^T}^{\prime } \\ L \end{pmatrix} \hat{\nu }(ct) + \tau _e \hat{\nu }(ct)^{\prime } \hat{\nu }(ct)\\&= \begin{bmatrix} \begin{pmatrix} \mathbf {\beta } \\ \theta _2 \end{pmatrix} - \hat{\mu }_{\beta } \end{bmatrix}^\prime \Sigma \begin{bmatrix} \begin{pmatrix} \mathbf {\beta }\\ \theta _2 \end{pmatrix} - \hat{\mu }_{\beta } \end{bmatrix} - \hat{\mu }_{\beta }^{\prime }\Sigma \,\hat{\mu }_{\beta } + \tau _e \hat{\nu }(ct)^{\prime } \hat{\nu }(ct), \end{aligned}$$

where

$$\begin{aligned} \Sigma = \begin{Bmatrix} \tau _e {\mathbf {X}^T}^{\prime } {\mathbf {X}^T}&0 \\ 0&\tau _e I_{k_1-r}+ \tau _s \widetilde{V}_{22} \end{Bmatrix},\ \hat{\mu }_{\beta } = \tau _e \Sigma ^{-1} \begin{pmatrix} {\mathbf {X}^T}^{\prime } \\ L \end{pmatrix} \hat{\nu }(ct). \end{aligned}$$

From this, we have

$$\begin{aligned}&\pi (\beta , \theta _2, \tau _s, \tau _e | \hat{\nu }(ct)) \propto \tau _e^{k_1/2} \tau _s^{(k_1-r-G)/2} \exp \Big \{ -\frac{1}{2} \begin{bmatrix} \begin{pmatrix} \mathbf {\beta } \\ \theta _2 \end{pmatrix} - \hat{\mu }_{\beta } \end{bmatrix}^\prime \Sigma \begin{bmatrix} \begin{pmatrix} \mathbf {\beta } \\ \theta _2 \end{pmatrix} - \hat{\mu }_{\beta } \end{bmatrix} \Big \}\\&\times \exp \Big \{ -\frac{1}{2} \Big [ \tau _e \hat{\nu }(ct)^{\prime } \hat{\nu }(ct) - \hat{\mu }_{\beta }^{\prime }\Sigma \,\hat{\mu }_{\beta } \Big ] \Big \}\, \pi (\tau _s)\,\pi (\tau _e). \end{aligned}$$

Therefore, \(( \mathbf {\beta }, \theta _2)\ | \ \hat{\nu }(ct), \tau _s, \tau _e \sim N_{k_1} ( \hat{\mu }_{\beta }, \Sigma )\) with density

$$\begin{aligned} \pi (\beta , \theta _2 |\, \hat{\nu }(ct), \tau _s, \tau _e) = \frac{|\Sigma |^{1/2}}{(\sqrt{2\pi })^{p}} \exp \Big \{ -\frac{1}{2} \begin{bmatrix} \begin{pmatrix} \mathbf {\beta } \\ \theta _2 \end{pmatrix} - \hat{\mu }_{\beta } \end{bmatrix}^\prime \Sigma \begin{bmatrix} \begin{pmatrix} \mathbf {\beta } \\ \theta _2 \end{pmatrix} - \hat{\mu }_{\beta } \end{bmatrix}\Big \}, \end{aligned}$$

and the posterior density of \((\tau _s, \tau _e)\) is

$$\begin{aligned}&\pi (\tau _s, \tau _e|\hat{\nu }(ct))\propto \pi (\tau _s)\,\pi (\tau _e)\, \tau _e^{k_1/2} \tau _s^{(k_1-r-G)/2} |\Sigma |^{-1/2} \, \\&\exp \Big \{ -\frac{1}{2} \Big [ \tau _e \hat{\nu }(ct)^{\prime } \hat{\nu }(ct) - \hat{\mu }_{\beta }^{\prime }\Sigma \,\hat{\mu }_{\beta } \Big ] \Big \}\\&= \pi (\tau _s)\,\pi (\tau _e) \, \tau _e^{k_1/2} \tau _s^{(k_1-r-G)/2} |\Sigma |^{-1/2} \, \exp \big \{ -\frac{1}{2} h(\hat{\nu }(ct), \tau _s, \tau _e) \big \}, \end{aligned}$$

where

$$\begin{aligned} h(\hat{\nu }(ct), \tau _s, \tau _e)= & {} \tau _e \hat{\nu }(ct)^{\prime } \hat{\nu }(ct) - \hat{\mu }_{\beta }^{\prime }\Sigma \, \hat{\mu }_\beta \\= & {} \tau _e \hat{\nu }(ct)^\prime \Big [ I_{k_1} - \tau _e \begin{pmatrix} {\mathbf {X}^T}^{\prime } \\ L \end{pmatrix}^{\prime } \Sigma ^{-1} \begin{pmatrix} {\mathbf {X}^T}^{\prime } \\ L \end{pmatrix} \Big ] \hat{\nu }(ct). \end{aligned}$$

This is not a standard density. For computations, we can simulate \((\tau _s, \tau _e)\) using the Metropolis-Hastings algorithm with the proposal distributions: \(\tau _s^{cand}\, |\, \tau _s^{(i-1)} \sim \text { Log-normal}(\log \tau _s^{(i-1)}, \, \sigma ^2_s), \, \sigma ^2_s=0.1.\) and \(\tau _e^{cand}\, |\, \tau _e^{(i-1)} \sim \text { Log-normal}(\log \tau _e^{(i-1)}\), \(\sigma ^2_e),\, \sigma ^2_e=0.1.\)

1.2 Prediction of Abundance Under the Constrained Model

We set \(\theta _1=0\) in \(\nu = \mathbf {X} \beta + K^\prime \theta _1 + L^\prime \theta _2\), \(\theta = (\theta _1^\prime , \theta _2^\prime )^\prime |\tau _s \sim N(\mathbf {0}, \tau _s \widetilde{V} )\) where \(\widetilde{V} = (K^\prime \ L^\prime )^\prime \, V \, (K^\prime \ L^\prime )\). Here K is an \(r \times p\) matrix consisting of the eigenvectors of \(B = X(X^\prime X )^{-1} X^\prime \) (corresponding to the non-zero eigenvalues) as its rows and L is \((p-r) \times p\) matrix with eigenvectors of \(B^c = I_p - B\) (corresponding to the non-zero eigenvalues) as its rows. With \(\theta _1=0\), the model becomes

$$\begin{aligned} \nu = \mathbf {X} \beta + L^\prime \theta _2, \theta _2|\tau _s \sim N(\mathbf {0}, \tau _s LVL^\prime ). \end{aligned}$$
(5.5)

From (5.5), the prior on \(\nu \) is given by

$$\begin{aligned} \nu |\mathbf {\beta }, \tau _s \sim N_p(\mathbf {X}\mathbf {\beta }, U^{-1}), \end{aligned}$$
(5.6)

where \(U=L^\prime (\tau _s LVL^\prime )^{-1}L\). Combining (5.4) and (5.6), we obtain

$$\begin{aligned} \hat{\nu }(ct) | \mathbf {\beta }, \tau _s, \tau _e \sim N_{k_1}\big (\mathbf {X}^T\mathbf {\beta }, (\tau _e^{-1} I_{k_1} + U_{11})^{-1}\big ), \end{aligned}$$
(5.7)

where \(U_{11}={L^T}^\prime (\tau _s LVL^\prime )^{-1} L^T\) is the top \(k_1\times k_1\) square block of U and \(L^T\) is the first \(k_1\) columns of L. Upon specifying a prior density \(\pi ( \mathbf {\beta }, \tau _s, \tau _e)\), the corresponding posterior density \(\pi ( \mathbf {\beta }, \tau _s, \tau _e |\hat{\nu }(ct))\) is obtained by combining it with the model density under (5.7).

1.2.1 Hierarchical Bayes and Empirical Bayes

Proposition 5.3

(i) The fully hierarchical Bayes estimate of \(\nu ^S\) and its posterior covariance matrix are given by

$$\begin{aligned} E(\nu ^S|\hat{\nu }(ct))= & {} E^* \left( U_{21}(\tau _s)\bigl (\tau _e^{-1} I_{k_1} + U_{11}(\tau _s)\bigr )^{-1}\right) \hat{\nu }(ct) \nonumber \\&+\, \mathbf {X}^S E^*(\mathbf {\beta }) - E^* \bigl ( U_{21}(\tau _s)\bigl (\tau _e^{-1} I_{k_1} + U_{11}(\tau _s)\bigr )^{-1} \mathbf {X}^T \mathbf {\beta }\bigr ), \end{aligned}$$
(5.8)
$$\begin{aligned} Cov(\nu ^S| \hat{\nu }(ct))= & {} E^* \bigl (U_{22}(\tau _s) - U_{21}(\tau _s) \bigl (\tau _e^{-1} I_{k_1} + U_{11}(\tau _s)\bigr )^{-1} U_{12}(\tau _s) \bigr )\nonumber \\&+\, Cov^* (E(\nu ^S | \hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e )), \end{aligned}$$
(5.9)

where \(E^*\) and \(Cov^*\) denote expectation and covariance with respect to \(\pi (\mathbf {\beta }, \tau _s, \tau _e | \hat{\nu }(ct))\). (ii) An empirical Bayes estimate of \(\nu ^S\) and an empirical Bayes estimate of its covariance matrix are given by

$$\begin{aligned} \hat{\nu }_{EB}^S= & {} U_{21}(\hat{\tau _s})\bigl (\hat{\tau _e}^{-1} I_{k_1} + U_{11}(\hat{\tau _s})\bigr )^{-1}\hat{\nu }(ct) \nonumber \\&+\, (\mathbf {X}^S - U_{21}(\hat{\tau _s})\bigl (\hat{\tau _e}^{-1} I_{k_1} + U_{11}(\hat{\tau _s})\bigr )^{-1} \mathbf {X}^T)\hat{\mathbf {\beta }}, \end{aligned}$$
(5.10)
$$\begin{aligned} \hat{Cov}_{EB}(\nu ^S)= & {} U_{22}(\hat{\tau _s}) - U_{21}(\hat{\tau _s}) \bigl (\hat{\tau _e}^{-1} I_{k_1} + U_{11}(\hat{\tau _s})\bigr )^{-1} U_{12}(\hat{\tau _s}), \end{aligned}$$
(5.11)

where \(\hat{\mathbf {\beta }}, \hat{\tau _s}, \hat{\tau _e}\) are the empirical Bayes estimates of \(\mathbf {\beta }, \tau _s, \tau _e\).

Proof

Since \(\hat{\nu }(ct) = \nu ^T + \mathbf {\epsilon }\) where \(\mathbf {\epsilon } \sim N(\mathbf {0}, \tau _e I_{k_1})\) (and is independent of \(\nu ^T\)), we have

$$\begin{aligned} \left( \begin{array}{c} \hat{\nu }(ct)\\ \nu ^T\\ \nu ^S\end{array}\right) \, | \, \mathbf {\beta }, \tau _s, \tau _e\sim & {} N_{p+k_1}\left( \left( \begin{array}{c} \mathbf {X}^T\mathbf {\beta }\\ \mathbf {X}^T\mathbf {\beta }\\ \mathbf {X}^S\mathbf {\beta } \end{array}\right) , \left( \begin{array}{ccc} \tau _e^{-1} I_{k_1} + U_{11}(\tau _s) &{} U_{11}(\tau _s) &{} U_{12}(\tau _s)\\ U_{11}(\tau _s) &{} U_{11}(\tau _s) &{} U_{12}(\tau _s)\\ U_{21}(\tau _s) &{} U_{21}(\tau _s) &{} U_{22}(\tau _s) \end{array}\right) ^{-1} \right) ,\nonumber \\ \end{aligned}$$
(5.12)

where \(U_{11}\), \(U_{22}\), \(U_{12}\) and \(U_{21} = U_{12}^\prime \) are as in

$$\begin{aligned} L^\prime (\tau _s LVL^\prime )^{-1}L = U(\tau _s) = \left( \begin{array}{cc} U_{11}(\tau _s) &{} U_{12}(\tau _s)\\ U_{21}(\tau _s) &{} U_{22}(\tau _s)\end{array}\right) . \end{aligned}$$

It then follows that

$$\begin{aligned}&\nu ^S | \hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e \sim N_{k_2}\Bigl ( \mathbf {X}^S\mathbf {\beta } + U_{21}\bigl (\tau _e^{-1} I_{k_1} + U_{11}(\tau _s) \bigr )^{-1}(\hat{\nu }(ct) - \mathbf {X}^T\mathbf {\beta }),\nonumber \\&\bigl ( U_{22}(\tau _s) - U_{21}(\tau _s)\bigl (\tau _e^{-1} I_{k_1} + U_{11}(\tau _s)\bigr )^{-1} U_{12}(\tau _s)\bigr )^{-1}\Bigr ), \end{aligned}$$
(5.13)

Now note that \(E(\nu ^S | \hat{\nu }(ct)) = E[E(\nu ^S | \hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e)],\) where the outside expectation is with respect to \(\pi ( \mathbf {\beta }, \tau _s, \tau _e |\hat{\nu }(ct))\). Further, \(\nu ^S | \hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e \) is as given in ( 5.13) above. \(\square \)

1.2.2 Estimation of Total Abundance

In addition to the abundance levels across the region, we also desire an estimate of the total abundance in the region, \(A(\mathbf {\lambda }) = \sum _{i=1}^{k_1+k_2} \lambda _i = \sum _{i=1}^{k_1+k_2} \exp (\nu _i)\). This estimate and its estimation error can be derived as follows. From (5.12), we have that

$$\begin{aligned} \nu |\hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e \sim N_p \left( \mathbf {\mu }(\mathbf {\beta }, \tau _s, \tau _e), P^{-1}(\mathbf {\beta }, \tau _s, \tau _e)\right) , \end{aligned}$$
(5.14)

where (suppressing the dependence on \(\hat{\nu }(ct)\))

$$\begin{aligned} \mathbf {\mu }(\mathbf {\beta }, \tau _s, \tau _e)&= \mathbf {X}\mathbf {\beta } + (U_{11}(\tau _s), U_{12}(\tau _s))^\prime (\tau _e^{-1} I_{k_1} + U_{11}(\tau _s))^{-1}(\hat{\nu }(ct)-\mathbf {X}^T\mathbf {\beta }), \nonumber \\ P(\mathbf {\beta }, \tau _s, \tau _e)&= U(\tau _s)-(U_{11}(\tau _s), U_{12}(\tau _s))^\prime (\tau _e^{-1} I_{k_1} + U_{11}(\tau _s))^{-1} (U_{11}(\tau _s), U_{12}(\tau _s)). \end{aligned}$$
(5.15)

For later use, let \(\mathbf {\mu }(\mathbf {\beta }, \tau _s, \tau _e) = (\mu _i)\) and \(P(\mathbf {\beta }, \tau _s, \tau _e) = ((P_{ij}))\) so that \(\mu _i\) denotes the ith element of the vector \(\mathbf {\mu }\) and \(P_{ij}\) denotes the (ij)th element of the matrix P.

As before,

$$\begin{aligned} E(\exp (\nu _i)|\hat{\nu }(ct))&= E[E(\exp (\nu _i)|\hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e)]\\ Var(\exp (\nu _i)|\hat{\nu }(ct))&= E[Var(\exp (\nu _i)|\hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e)] + Var[E(\exp (\nu _i)|\hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e)]. \end{aligned}$$

Further, using normality,

$$\begin{aligned} E(\exp (\nu _i)|\hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e)&= \exp (\mu _i + P_{ii}/2),\\ E(\exp (\nu _i+\nu _j)|\hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e)&= \exp (\mu _i + \mu _j + (P_{ii}+P_{jj}+2P_{ij})/2). \end{aligned}$$

Therefore,

$$\begin{aligned} E(A(\mathbf {\lambda })|\hat{\nu }(ct),\mathbf {\beta }, \tau _s, \tau _e) = \sum _{i=1}^{k_1+k_2} \exp (\mu _i + P_{ii}/2), \end{aligned}$$

and

$$\begin{aligned}&Var(A(\mathbf {\lambda })|\hat{\nu }(ct),\mathbf {\beta }, \tau _s, \tau _e)\\&= \sum _{i=1}^{k_1+k_2} \exp (2\mu _i + 2P_{ii}) + \sum _{i\ne j} \exp (\mu _i + \mu _j + (P_{ii}+P_{jj}+2P_{ij})/2)\\&-\left( \sum _{i=1}^{k_1+k_2} \exp (\mu _i + P_{ii}/2)\right) ^2\\&= \sum _{i=1}^{k_1+k_2} \bigl (\exp (2\mu _i +2P_{ii}) - \exp (2\mu _i + P_{ii})\bigr ) + \sum _{i\ne j} \bigl (\exp (\mu _i + \mu _j + (P_{ii}+P_{jj}+2P_{ij})/2)\\&\quad - \exp (\mu _i + \mu _j + (P_{ii}+P_{jj})/2)\bigr )\\&= \sum _{i=1}^{k_1+k_2} \exp (2\mu _i +P_{ii})\bigl (\exp (P_{ii})-1)\bigr ) + \sum _{i\ne j} \exp (\mu _i + \mu _j + (P_{ii}+P_{jj})/2) \bigl (\exp (P_{ij})-1\bigr ). \end{aligned}$$

Using this, we have the following result.

Proposition 5.4

(i) The hierarchical Bayes estimate of total abundance and its posterior variance are, respectively,

$$\begin{aligned} \hat{A}_{HB}&= \sum _{i=1}^{k_1+k_2} E^* (\exp (\mu _i + P_{ii}/2)) \text { and }\\ \hat{Var}_{HB}(A)&= E^* \bigl (\sum _{i=1}^{k_1+k_2} \exp (2\mu _i +P_{ii}) \bigl (\exp (P_{ii})-1\bigr ) \bigr ) \\&\quad + E^* \bigl (\sum _{i\ne j} \exp (\mu _i + \mu _j + (P_{ii}+P_{jj})/2) \bigl (\exp (P_{ij})-1\bigr ) \bigr ) \\&\quad + Var^* \bigl ( \sum _{i=1}^{k_1+k_2} \exp (\mu _i + P_{ii}/2)\bigr ), \end{aligned}$$

where \(E^*\) and \(Var^*\) denote expectation and variance with respect to the posterior distribution \(\pi (\mathbf {\beta }, \tau _s, \tau _e | \hat{\nu }(ct))\).

(ii) An empirical Bayes approximation for these are, respectively,

$$\begin{aligned} \hat{A}_{EB}&= \sum _{i=1}^{k_1+k_2} \exp (\hat{\mu }_i + \hat{P}_{ii}/2) \text { and }\\ \hat{Var}_{EB}(A)&= \sum _{i=1}^{k_1+k_2} \exp (2\hat{\mu }_i +\hat{P}_{ii}) \bigl (\exp (\hat{P}_{ii})-1\bigr ) \\&+ \sum _{i\ne j} \exp (\hat{\mu }_i + \hat{\mu }_j + (\hat{P}_{ii}+\hat{P}_{jj})/2) \bigl (\exp (\hat{P}_{ij})-1\bigr ), \end{aligned}$$

where \(\hat{\mu }_i = \mu _i(\hat{\mathbf {\beta }}, \hat{\tau _s}, \hat{\tau _e}),\, \hat{P}_{ij} = P_{ij}(\hat{\mathbf {\beta }}, \hat{\tau _s}, \hat{\tau _e})\), \(\hat{\mathbf {\beta }}, \hat{\tau _s}, \hat{\tau _e}\) are the empirical Bayes estimates of \(\mathbf {\beta }, \tau _s, \tau _e\).

1.2.3 Expressions for the Model, Prior, Posterior and the Marginal Density

We have the model

$$\begin{aligned} \hat{\nu }(ct) = \nu ^T + \epsilon , where \epsilon \sim N_{k_1}(\mathbf {0}, \tau _e I_{k_1}), \end{aligned}$$

with the CAR prior distribution on \(\nu \):

$$\begin{aligned} \nu |\mathbf {\beta },\tau _s \sim N_{p}(\mathbf {X}\mathbf {\beta }, U^{-1}), \end{aligned}$$
(5.16)

where \(U=L^\prime (\tau _s LVL^\prime )^{-1}L\), \(\mathbf {X}\) is the matrix of covariates. \(\mathbf {\beta }\) is given a flat prior and \(\tau _e\), \(\tau _s\) are given independent Gamma(0.01, 0.01) priors.

Under this specification, the posterior distributions for the parameters derived below. Posterior distribution of \(\nu \), obtained in (5.14) and (5.15), is

$$\begin{aligned} \nu |\hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e \sim N_p\left( \mathbf {\mu }(\mathbf {\beta }, \tau _s, \tau _e), P^{-1}(\mathbf {\beta }, \tau _s, \tau _e)\right) , \end{aligned}$$

where (suppressing the dependence on \(\hat{\nu }(ct)\))

$$\begin{aligned} \mathbf {\mu }(\mathbf {\beta }, \tau _s, \tau _e)&= \mathbf {X}\mathbf {\beta } + (U_{11}(\tau _s), U_{12}(\tau _s))^\prime (\tau _e^{-1} I_{k_1} + U_{11}(\tau _s))^{-1}(\hat{\nu }(ct)-\mathbf {X}^T\mathbf {\beta }),\\ P(\mathbf {\beta }, \tau _s, \tau _e)&= U(\tau _s)-(U_{11}(\tau _s), U_{12}(\tau _s))^\prime (\tau _e^{-1} I_{k_1} + U_{11}(\tau _s))^{-1} (U_{11}(\tau _s), U_{12}(\tau _s)). \end{aligned}$$

with the density

$$\begin{aligned} \pi (\nu \, |\, \hat{\nu }(ct), \mathbf {\beta }, \tau _s, \tau _e)=(\sqrt{2\pi })^{-p} |P|^{-1/2} \exp \Big [-\frac{1}{2} (\nu -\mu )^\prime P^{-1}(\nu -\mu )\Big ]. \end{aligned}$$

To obtain posterior of \(\mathbf {\beta }\), note that

$$\begin{aligned}&\left( \left( \begin{array}{c} \hat{\nu }(ct)\\ \nu ^T\\ \nu ^S\end{array}\right) - \left( \begin{array}{c} \mathbf {X}^T\mathbf {\beta }\\ \mathbf {X}^T\mathbf {\beta }\\ \mathbf {X}^S\mathbf {\beta } \end{array}\right) \right) ^\prime \left( \begin{array}{ccc} \tau _e^{-1} I_{k_1} + U_{11}(\tau _s) &{} U_{11}(\tau _s) &{} U_{12}(\tau _s)\\ U_{11}(\tau _s) &{} U_{11}(\tau _s) &{} U_{12}(\tau _s)\\ U_{21}(\tau _s) &{} U_{21}(\tau _s) &{} U_{22}(\tau _s) \end{array}\right) ^{-1} \left( \left( \begin{array}{c} \hat{\nu }(ct)\\ \nu ^T\\ \nu ^S\end{array}\right) \right. \\&\left. \quad -\left( \begin{array}{c} \mathbf {X}^T\mathbf {\beta }\\ \mathbf {X}^T\mathbf {\beta }\\ \mathbf {X}^S\mathbf {\beta } \end{array}\right) \right) = (\nu -\mu )^\prime {P}^{-1} (\nu - \mu ) + (\hat{\nu }(ct) \\&\quad - \mathbf {X}^T \mathbf {\beta })^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1} (\hat{\nu }(ct) - \mathbf {X}^T \mathbf {\beta }), \end{aligned}$$

where \(U_{11}\), \(U_{22}\), \(U_{12}\) and \(U_{21} = U_{12}^\prime \) are as in

$$\begin{aligned} L^\prime (\tau _s LVL^\prime )^{-1}L = U(\tau _s) = \left( \begin{array}{cc} U_{11}(\tau _s) &{} U_{12}(\tau _s)\\ U_{21}(\tau _s) &{} U_{22}(\tau _s)\end{array}\right) . \end{aligned}$$

From this, we have that

$$\begin{aligned}&\pi (\beta , \tau _s, \tau _e|\hat{\nu }(ct))\\&\propto \frac{|P|^{1/2}\pi _3(\tau _s)\pi _4(\tau _e)}{(2\pi )^{k_1/2} |\Sigma |^{1/2}} \exp \Big [ -\frac{1}{2} \Big \{ (\hat{\nu }(ct)-X^T \beta )^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1} (\hat{\nu }(ct)-X^T \beta )\Big \}\Big ]\\&= \frac{\pi _3(\tau _s)\pi _4(\tau _e)}{(2\pi )^{k_1/2} | \tau _e^{-1} I_{k_1} + U_{11}|^{1/2}} \exp \Big [ -\frac{1}{2} (\beta -\hat{\beta }_0)^\prime \Sigma _{\beta }(\beta -\hat{\beta }_0) \Big ]\\&\times \exp \Big [ -\frac{1}{2} \Big \{ \hat{\nu }(ct)^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1} \hat{\nu }(ct) -{\hat{\beta }_0}^\prime \Sigma _{\beta } \hat{\beta }_0\Big \}\Big ], \end{aligned}$$

where

$$\begin{aligned} \Sigma= & {} \left( \begin{array}{ccc} \tau _e^{-1} I_{k_1} + U_{11}(\tau _s) &{} U_{11}(\tau _s) &{} U_{12}(\tau _s)\\ U_{11}(\tau _s) &{} U_{11}(\tau _s) &{} U_{12}(\tau _s)\\ U_{21}(\tau _s) &{} U_{21}(\tau _s) &{} U_{22}(\tau _s) \end{array}\right) ,\\ \Sigma _{\beta }= & {} {\mathbf {X}^T}^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1}\mathbf {X}^T,\, \hat{\mathbf {\beta }}_{0} = \Sigma _{\beta }^{-1} {\mathbf {X}^T}^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1} \hat{\nu }(ct). \end{aligned}$$

Therefore, \(\beta | \hat{\nu }(ct), \tau _s, \tau _e \sim N_r(\hat{\beta }_0, \Sigma _{\beta })\) with density

$$\begin{aligned} \pi (\beta \, |\, \hat{\nu }(ct), \tau _s, \tau _e) = (\sqrt{2\pi })^{-r} |\Sigma _{\beta }|^{1/2} \exp \Big [ -\frac{1}{2} (\beta -\hat{\beta }_0)^\prime \Sigma _{\beta }(\beta -\hat{\beta }_0) \Big ]. \end{aligned}$$

Now to obtain the posterior of \((\tau _s, \tau _e)\), observe that \(\pi (\beta , \tau _s, \tau _e|\hat{\nu }(ct)) = \pi (\beta \, |\, \hat{\nu }(ct), \tau _s, \tau _e)\, \pi (\tau _s, \tau _e \, |\, \hat{\nu }(ct))\). Therefore, the posterior density of \((\tau _s, \tau _e)\) is

$$\begin{aligned}&\pi (\tau _s, \tau _e|\hat{\nu }(ct))\\&\propto \frac{\pi _3(\tau _s)\, \pi _4( \tau _e) |\Sigma _{\beta }|^{-1/2}}{(2\pi )^{(k_1-r)/2} |\tau _e^{-1} I_{k_1} + U_{11}|^{1/2}} \, \exp \Big [ -\frac{1}{2} \Big \{ \hat{\nu }(ct)^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1} \hat{\nu }(ct) -{\hat{\beta }_0}^\prime \Sigma _{\beta } \hat{\beta }_0\Big \}\Big ]\\&=\frac{\pi _3(\tau _s)\, \pi _4( \tau _e) |\Sigma _{\beta }|^{-1/2}}{(2\pi )^{(k_1-r)/2} |\tau _e^{-1} I_{k_1} + U_{11}|^{1/2}} \, \exp \big \{ -\frac{1}{2} h(\hat{\nu }(ct), \tau _s, \tau _e) \big \}, \end{aligned}$$

where

$$\begin{aligned} h(\hat{\nu }(ct), \tau _s, \tau _e)&=\hat{\nu }(ct)^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1} \hat{\nu }(ct)-\hat{\mathbf {\beta }}_{0}^\prime \Sigma _{\beta } \hat{\mathbf {\beta }}_{0}\\&=\hat{\nu }(ct)^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1} \big [ I_{k_1} - \mathbf {X}^T \big ( {\mathbf {X}^T}^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1}\mathbf {X}_j^T\big )^{-1}\\&\quad {\mathbf {X}^T}^\prime (\tau _e^{-1} I_{k_1} + U_{11})^{-1} \big ] \hat{\nu }(ct). \end{aligned}$$

which is not a standard density. However, \((\tau _s, \tau _e)\) may be simulated using the Metropolis-Hastings algorithm with the proposal distributions: \(\tau _s^{cand}\, |\, \tau _s^{(i-1)} \sim \text { Log-normal}(\log \tau _s^{(i-1)}, \sigma ^2_s)\), \(\sigma ^2_s=0.1\) and \(\tau _e^{cand}\, |\, \tau _e^{(i-1)} \sim \text { Log-normal}(\log \tau _e^{(i-1)}, \ \sigma ^2_e),\, \sigma ^2_e=0.1.\)

1.3 Model Selection

Consider the model selection problem given in (2.12) in the presence of confounding spatial factors. Then (3.6) yields,

$$\begin{aligned} M_j:&\, \hat{\nu }(ct) = \nu ^T +\mathbf {\epsilon }_j,\, \nu ^T = \mathbf {X}_j^T \mathbf {\beta }_j+L_j^\prime \theta _{2j}, \end{aligned}$$
(5.17)

where \(\mathbf {\epsilon }_j|\tau _e \sim N(\mathbf {0},\tau _e I_{k_1})\), \(\theta _{2j}|\tau _s \sim N(\mathbf {0}, \tau _s \widetilde{V}_{22j})\), \(\mathbf {\beta }_j\) has a flat prior, \(\tau _e\), \(\tau _s\) both have Gamma(ab) prior distributions and they are all independent of each other.

Result

The marginal or predictive density \(m_j\) of \(\hat{\nu }(ct)\) under the model \(M_j\) is given by:

$$\begin{aligned} m_j = \int f_j(\hat{\nu }(ct)| \tau _s, \tau _e) \pi _3(\tau _s) \pi _4( \tau _e)\,d\tau _s \,d\tau _e, \end{aligned}$$
(5.18)

where \(f_j(\hat{\nu }(ct)|\tau _s, \tau _e) =\tau _s^{\frac{1}{2} (k_1-r-G)} \, \tau _e^{k_1/2} \, |\Sigma _j|^{-1/2} \,\exp \big \{ -\frac{1}{2} h(\hat{\nu }(ct), \tau _s, \tau _e)\big \} \) with \(\Sigma _j = \begin{bmatrix} \tau _e\mathbf {X}^{T^\prime }_j\mathbf {X}^{T}_j&0\\ 0&\tau _e I_{k_1-r} + \tau _s \widetilde{V}_{22j} \end{bmatrix}\), \(\hat{\mu }_j= \tau _e \Sigma ^{-1}_j \begin{pmatrix} \mathbf {X}^{T^\prime }_j \\ L_j \end{pmatrix}\hat{\nu }(ct)\), \(h(\hat{\nu }(ct), \tau _s, \tau _e) = \tau _e \hat{\nu }(ct)^\prime \Big [I_{k_1} - \tau _e \begin{pmatrix} \mathbf {X}^{T^\prime }_j \\ L_j \end{pmatrix}^\prime \Sigma ^{-1}_j \begin{pmatrix} \mathbf {X}^{T^\prime }_j \\ L_j \end{pmatrix} \Big ] \hat{\nu }(ct)\).

Proof

The marginal is given by

$$\begin{aligned} m_j&= m(\hat{\nu }(ct)|M_j)\\&= \int f(\hat{\nu }(ct)|\beta _j, \theta _{2j},\tau _e) \pi _1(\mathbf {\beta }_j)\pi _2(\theta _{2j}|\tau _s)\pi _3(\tau _s) \pi _4(\tau _e) \,d\mathbf {\beta }_j\,d\theta _{2j}\,d\tau _s \,d\tau _e. \end{aligned}$$

Note from (5.17) that the exponent of the expression inside the above integral can be decomposed as shown below.

$$\begin{aligned}&\tau _e (\hat{\nu }(ct)- \mathbf {X}^T_j \beta _j - L_j^\prime \theta _{2j})^\prime (\hat{\nu }(ct)- \mathbf {X}^T_j \beta _j - L_j^\prime \theta _{2j}) + \tau _s \theta _{2j}^\prime \widetilde{V}_{22j} \theta _{2j} \\&= \Big [\begin{pmatrix} \beta _j \\ \theta _{2j} \end{pmatrix} - \hat{\mu }_j\Big ]^\prime \Sigma _j \Big [\begin{pmatrix}\beta _j \\ \theta _{2j} \end{pmatrix} - \hat{\mu }_j\Big ] + \tau _e \hat{\nu }(ct)^\prime \Big [I_{k_1} - \tau _e \begin{pmatrix} \mathbf {X}^{T^\prime }_j \\ L_j \end{pmatrix}^\prime \Sigma ^{-1}_j \begin{pmatrix} \mathbf {X}^{T^\prime }_j \\ L_j \end{pmatrix} \Big ] \hat{\nu }(ct) \\&= \Big [\begin{pmatrix} \beta _j \\ \theta _{2j} \end{pmatrix} - \hat{\mu }_j\Big ]^\prime \Sigma _j \Big [\begin{pmatrix}\beta _j \\ \theta _{2j} \end{pmatrix} - \hat{\mu }_j\Big ] + h(\hat{\nu }(ct), \tau _s, \tau _e), \end{aligned}$$

where \(\Sigma _j = \begin{bmatrix} \tau _e\mathbf {X}^{T^\prime }_j\mathbf {X}^{T}_j&0\\ 0&\tau _e I_{k_1-r} + \tau _s \widetilde{V}_{22j} \end{bmatrix}\), \(\hat{\mu }_j= \tau _e \Sigma ^{-1}_j \begin{pmatrix} \mathbf {X}^{T^\prime }_j \\ L_j \end{pmatrix}\hat{\nu }(ct)\),

\(h(\hat{\nu }(ct), \tau _s, \tau _e) = \tau _e \hat{\nu }(ct)^\prime \Big [I_{k_1} - \tau _e \begin{pmatrix} \mathbf {X}^{T^\prime }_j \\ L_j \end{pmatrix}^\prime \Sigma ^{-1}_j \begin{pmatrix} \mathbf {X}^{T^\prime }_j \\ L_j \end{pmatrix} \Big ] \hat{\nu }(ct)\). Integrating out \(\beta _j\) and \(\theta _{2j}\), we obtain,

$$\begin{aligned} m_j&= m(\hat{\nu }(ct)|M_j)\\&= \int \tau _s^{\frac{1}{2} (k_1-r-G)} \, \tau _e^{k_1/2} \, |\Sigma _j|^{-1/2} \times \, \exp \big \{ -\frac{1}{2} h(\hat{\nu }(ct), \tau _s, \tau _e)\big \}\,\pi _3(\tau _s) \pi _4(\tau _e)\, d\tau _s \,d\tau _e\\&= b^{2a} (\Gamma (a))^{-2}\int \tau _s^{\frac{1}{2} (k_1-r-G)+a - 1} \, \tau _e^{k_1/2+a-1} \, |\Sigma _j|^{-1/2} \\&\quad \times \, \exp \big \{ -\frac{1}{2} h(\hat{\nu }(ct), \tau _s, \tau _e) - b(\tau _s + \tau _e)\big \}\, d\tau _s \,d\tau _e. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Delampady, M., Parameshwaran, R. et al. Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources. JABES 22, 111–139 (2017). https://doi.org/10.1007/s13253-017-0276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-017-0276-7

Keywords

Navigation