Skip to main content
Log in

Deep learning approaches based improved light weight U-Net with attention module for optic disc segmentation

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Glaucoma is a major cause of blindness worldwide, and its early detection is essential for the timely management of the condition. Glaucoma-induced anomalies of the optic nerve head may cause variation in the Optic Disc (OD) size. Therefore, robust OD segmentation techniques are necessary for the screening for glaucoma. Computer-aided segmentation has become a promising diagnostic tool for the early detection of glaucoma, and there has been much interest in recent years in using neural networks for medical image segmentation. This study proposed an enhanced lightweight U-Net model with an Attention Gate (AG) to segment OD images. We also used a transfer learning strategy to extract relevant features using a pre-trained EfficientNet-B0 CNN, which preserved the receptive field size and AG, which reduced the impact of gradient vanishing and overfitting. Additionally, the neural network trained using the binary focal loss function improved segmentation accuracy. The pre-trained Attention U-Net was validated using publicly available datasets, such as DRIONS-DB, DRISHTI-GS, and MESSIDOR. The model significantly reduced parameter quantity by around 0.53 M and had inference times of 40.3 ms, 44.2 ms, and 60.6 ms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311(18):1901–1911

    Article  Google Scholar 

  2. Kolko M (2017) Detection and prevention of blindness in patients with glaucoma is a socio-economical challenge. Ugeskrift for laeger 179(5)

  3. Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL, Martin KR (2016) Primary open-angle glaucoma. Nat Rev Dis Primers 2(1):1–19

    Article  Google Scholar 

  4. Yung ES, Chang EL, Moster MR (2017) The use of optic disc and retinal nerve fiber imaging in detecting structural damage before the onset of functional loss. Adv Ophthalmol Optom 2(1):243–260

    Article  Google Scholar 

  5. Haleem MS, Han L, Van Hemert J, Li B (2013) Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput Med Imaging Graph 37(7–8):581–596

    Article  Google Scholar 

  6. Scanlon PH, Malhotra R, Thomas G, Foy C, Kirkpatrick J, Lewis-Barned N, Harney B, Aldington S (2003) The effectiveness of screening for diabetic retinopathy by digital imaging photography and technician ophthalmoscopy. Diabetes Med 20(6):467–474

    Article  CAS  Google Scholar 

  7. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37(7):1597–1605

    Article  Google Scholar 

  8. Veena H, Muruganandham A, Kumaran TS (2021) A novel optic disc and optic cup segmentation technique to diagnose glaucoma using deep learning convolutional neural network over retinal fundus images. J King Saud Univ 34(8):6187–6198

    Google Scholar 

  9. Chen C, Wang W, Ozolek JA, Lages N, Altschuler SJ, Wu LF, Rohde GK (2012) A template matching approach for segmenting microscopy images. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, pp 768–771

  10. Kovács G, Hajdu A (2016) A self-calibrating approach for the segmentation of retinal vessels by template matching and contour reconstruction. Med Image Anal 29:24–46

    Article  Google Scholar 

  11. Taghizadeh E, Terrier A, Becce F, Farron A, Büchler P (2019) Automated ct bone segmentation using statistical shape modelling and local template matching. Comput Methods Biomech Biomed Engin 22(16):1303–1310

    Article  Google Scholar 

  12. Di Cataldo S, Ficarra E, Acquaviva A, Macii E (2010) Achieving the way for automated segmentation of nuclei in cancer tissue images through morphology-based approach: a quantitative evaluation. Comput Med Imaging Graph 34(6):453–461

    Article  Google Scholar 

  13. Singh D, Singh B, et al. (2014) A new morphology based approach for blood vessel segmentation in retinal images. In: 2014 Annual IEEE India Conference (INDICON), IEEE, pp 1–6

  14. Issac A, Parthasarthi M, Dutta MK (2015) An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images. In: 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), IEEE, pp 143–147

  15. Raja R, Kumar S, Mahmood MR (2020) Color object detection based image retrieval using roi segmentation with multi-feature method. Wireless Pers Commun 112(1):169–192

    Article  Google Scholar 

  16. Wang P, Patel VM, Hacihaliloglu I (2018) Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided cnn. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 134–142

  17. Sharma P, Suji J (2016) A review on image segmentation with its clustering techniques. Int J Signal Process Image Process Pattern Recognit 9(5):209–218

    Google Scholar 

  18. Xia K, Gu X, Zhang Y (2020) Oriented grouping-constrained spectral clustering for medical imaging segmentation. Multimedia Syst 26(1):27–36

    Article  Google Scholar 

  19. Abdullah M, Fraz MM, Barman SA (2016) Localization and segmentation of optic disc in retinal images using circular hough transform and grow-cut algorithm. PeerJ 4:e2003

    Article  Google Scholar 

  20. Gao Y, Yu X, Wu C, Zhou W, Lei X, Zhuang Y (2019) Automatic optic disc segmentation based on modified local image fitting model with shape prior information. J Healthcare Eng. https://doi.org/10.1155/2019/2745183

    Article  Google Scholar 

  21. Gao Y, Yu X, Wu C, Zhou W, Wang X, Chu H (2019) Accurate and efficient segmentation of optic disc and optic cup in retinal images integrating multi-view information. IEEE Access 7:148183–148197

    Article  Google Scholar 

  22. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 234–241

  23. Khanna A, Londhe ND, Gupta S, Semwal A (2020) A deep residual u-net convolutional neural network for automated lung segmentation in computed tomography images. Biocybern Biomed Eng 40(3):1314–1327

    Article  Google Scholar 

  24. Chen X, Xu Y, Yan S, Wong DWK, Wong TY, Liu J (2015) Automatic feature learning for glaucoma detection based on deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 669–677. Springer

  25. Bi L, Guo Y, Wang Q, Feng D, Fulham M, Kim J (2019) Automated segmentation of the optic disk and cup using dual-stage fully convolutional networks. arXiv preprint arXiv:1902.04713

  26. Yu S, Xiao D, Frost S, Kanagasingam Y (2019) Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput Med Imaging Graph 74:61–71

    Article  Google Scholar 

  27. Sevastopolsky A (2017) Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network. Pattern Recognit Image Anal 27(3):618–624

    Article  Google Scholar 

  28. Juneja M, Singh S, Agarwal N, Bali S, Gupta S, Thakur N, Jindal P (2020) Automated detection of Glaucoma using deep learning convolution network (G-net). Multimed Tools Appl 79(21):15531–53

    Article  Google Scholar 

  29. Al-Bander B, Williams BM, Al-Nuaimy W, Al-Taee MA, Pratt H, Zheng Y (2018) Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry 10(4):87

    Article  Google Scholar 

  30. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3431–3440

  31. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  32. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  33. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2961–2969

  34. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2019) Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 39(6):1856–1867

    Article  Google Scholar 

  35. Vuola AO, Akram SU, Kannala J (2019) Mask-rcnn and u-net ensembled for nuclei segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE, pp 208–212

  36. Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D (2019) Attention gated networks: Learning to leverage salient regions in medical images. Med Image Anal 53:197–207

    Article  Google Scholar 

  37. Mei X, Pan E, Ma Y, Dai X, Huang J, Fan F, Du Q, Zheng H, Ma J (2019) Spectral-spatial attention networks for hyperspectral image classification. Remote Sens 11(8):963

    Article  Google Scholar 

  38. Sherstinsky A (2020) Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Physica D 404:132306

    Article  Google Scholar 

  39. Lin YW, Zhou Y, Faghri F, Shaw MJ, Campbell RH (2019) Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PLoS ONE 14(7):e0218942

    Article  CAS  Google Scholar 

  40. Wang Y, Velswamy K, Huang B (2017) A long-short term memory recurrent neural network based reinforcement learning controller for office heating ventilation and air conditioning systems. Processes 5(3):46

    Article  Google Scholar 

  41. Bin Y, Yang Y, Shen F, Xie N, Shen HT, Li X (2018) Describing video with attention-based bidirectional lstm. IEEE Trans Cybern 49(7):2631–2641

    Article  Google Scholar 

  42. Shankar S, Sarawagi S (2018) Posterior attention models for sequence to sequence learning. In: International Conference on Learning Representations

  43. Sharma S, Kiros R, Salakhutdinov R (2015) Action recognition using visual attention. arXiv preprint arXiv:1511.04119

  44. Li Z, Gavrilyuk K, Gavves E, Jain M, Snoek CG (2018) Videolstm convolves, attends and flows for action recognition. Comput Vis Image Underst 166:41–50

    Article  Google Scholar 

  45. Haque IRI, Neubert J (2020) Deep learning approaches to biomedical image segmentation. Inform Med Unlocked 18:100297

    Article  Google Scholar 

  46. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, et al. (2018) Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999

  47. Zhao X, Wang S, Zhao J, Wei H, Xiao M, Ta N (2021) Application of an attention u-net incorporating transfer learning for optic disc and cup segmentation. SIViP 15(5):913–921

    Article  Google Scholar 

  48. Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, PMLR, pp 6105–6114

  49. Yu Y, Lin H, Meng J, Wei X, Guo H, Zhao Z (2017) Deep transfer learning for modality classification of medical images. Information 8(3):91

    Article  Google Scholar 

  50. Wu C, Wu F, Qi T, Huang Y, Xie X (2021) Fastformer: Additive attention can be all you need. arXiv preprint arXiv:2108.09084

  51. Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015; Conference Date: 07-05-2015 through 09-05-2015

  52. Luong T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal, pp 1412–1421, https://doi.org/10.18653/v1/D15-1166, https://aclanthology.org/D15-1166

  53. Bhatkalkar BJ, Reddy DR, Prabhu S, Bhandary SV (2020) Improving the performance of convolutional neural network for the segmentation of optic disc in fundus images using attention gates and conditional random fields. IEEE Access 8:29299–29310

    Article  Google Scholar 

  54. Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2980–2988

  55. Jadon S (2020) A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), IEEE, pp 1–7

  56. Sivaswamy J, Krishnadas S, Chakravarty A, Joshi G, Tabish AS et al (2015) A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed Imaging Data Pap 2(1):1004

    Google Scholar 

  57. Carmona EJ, Rincón M, García-Feijoó J, Martínez-de-la Casa JM (2008) Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43(3):243–259

    Article  Google Scholar 

  58. Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A et al (2014) Feedback on a publicly distributed image database: the messidor database. Image Anal Stereol 33(3):231–234

    Article  Google Scholar 

  59. Tabassum M, Khan TM, Arsalan M, Naqvi SS, Ahmed M, Madni HA, Mirza J (2020) Cded-net: joint segmentation of optic disc and optic cup for glaucoma screening. IEEE Access 8:102733–102747

    Article  Google Scholar 

  60. Zilly JG, Buhmann JM, Mahapatra D (2015) Boosting convolutional filters with entropy sampling for optic cup and disc image segmentation from fundus images. In: International Workshop on Machine Learning in Medical Imaging, pp 136–143. Springer

  61. Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y, Zhang T, Gao S, Liu J (2019) Ce-net: context encoder network for 2d medical image segmentation. IEEE Trans Med Imaging 38(10):2281–2292

    Article  Google Scholar 

  62. Hasan MK, Alam MA, Elahi MTE, Roy S, Martí R (2021) Drnet: segmentation and localization of optic disc and fovea from diabetic retinopathy image. Artif Intell Med 111:102001

    Article  Google Scholar 

  63. Morales S, Naranjo V, Angulo J, Alcañiz M (2013) Automatic detection of optic disc based on pca and mathematical morphology. IEEE Trans Med Imaging 32(4):786–796

    Article  Google Scholar 

  64. Abdullah AS, Özok YE, Rahebi J (2018) A novel method for retinal optic disc detection using bat meta-heuristic algorithm. Med Biol Eng Comput 56(11):2015–2024

    Article  Google Scholar 

  65. Nija K, Anupama C, Gopi VP, Anitha V (2020) Automated segmentation of optic disc using statistical region merging and morphological operations. Phys Eng Sci Med 43(3):857–869

    Article  CAS  Google Scholar 

  66. Maninis KK, Pont-Tuset J, Arbeláez P, Van Gool L (2016) Deep retinal image understanding. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 140–148. Springer

  67. Nija K, Anitha V, Gopi VP (2019) An automated method of optic disc detection from retinal fundus images. In: 2019 International Conference on Contemporary Computing and Informatics (IC3I), pp 111–116. IEEE

  68. Roychowdhury S, Koozekanani DD, Kuchinka SN, Parhi KK (2015) Optic disc boundary and vessel origin segmentation of fundus images. IEEE J Biomed Health Inform 20(6):1562–1574

    Article  Google Scholar 

  69. Sarathi MP, Dutta MK, Singh A, Travieso CM (2016) Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images. Biomed Signal Process Control 25:108–117

    Article  Google Scholar 

  70. Gopi VP, Anjali M, Niwas SI (2017) Pca-based localization approach for segmentation of optic disc. Int J Comput Assist Radiol Surg 12(12):2195–2204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun P. Gopi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human study

For this type of study, formal consent is not required.

Informed Consent

This article does not contain any studies with human participants or animals performed by the authors.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalini, R., Gopi, V.P. Deep learning approaches based improved light weight U-Net with attention module for optic disc segmentation. Phys Eng Sci Med 45, 1111–1122 (2022). https://doi.org/10.1007/s13246-022-01178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-022-01178-4

Keywords

Navigation