Skip to main content
Log in

Simplifying the human lumbar spine (L3/L4) material in order to create an elemental structure for the future modeling

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The human lumbar spine incorporates the best joints in nature due to its optimal static and dynamic behavior against the internal and external loads. Developing an elemental structure based on this joint requires simplification in terms of the materials employed by keeping the mechanical and anatomical behaviors of the human lumbar spine. In the present study, the finite element (FE) of two motion segments of the human lumbar spine (L3/L4) was developed based on the CT scan data as the base for vertebrae geometry, verified geometry properties for another part of two motion segments, and combination of materials and loads obtained from the validated resources. Then, simplification occurred in four continuous steps such as omitting the annual fibers of annual matrix, representing the material of the annual matrix to the nucleus, demonstrating the material of annual matrix to the endplates too, and omitting the trabecular part of vertebrae. The present study aimed to propose the method for developing the basic structure of the human lumbar spine by simplifying its materials in the above-mentioned steps, analyzing the biomechanical effects of these four steps in terms of their internal and external responses, and validating the data obtained from the FE method. The validated simplified way introduced in this study can be used for future research by making implants, prosthesis, and modeling based on the human lumbar spine in other fields such as industrial design, building structures, or joints, which results in making the model easier, cheaper, and more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Diagram 1
Diagram 2
Diagram 3
Diagram 4
Diagram 5
Diagram 6

Similar content being viewed by others

References

  1. Lebedev YS, Stroiizdat M (1990) Bionic architecture. Stroiizdat, Moscow p, p 269

    Google Scholar 

  2. Salsabili N, Mahmoudi MM, Salsabili N, Nasr Azadani A (2016) Designing structural systems based on the hip joint. In 4th international conference on civil and architectural engineering Ur pp 1–17

  3. Salsabili N, Prieto Barrio MI, Santiago López J (2018) Human Joints as a beneficial source of building structure. CITE 2018

  4. Versos CAM, Coelho DA (2011) Biologically inspired design: methods and validation. Ind Des Front 101:120. https://doi.org/10.5772/20326

    Article  Google Scholar 

  5. Types of Joints. https://www.teachpe.com/anatomy/joints.php. Accessed 1 Aug 2017

  6. Zakharchuk A (2012) Bionics in architecture. Chall Mod Technol 3:50–53

    Google Scholar 

  7. Taghizadeh K, Bastanfard M (2012) The anatomy of a human body, a model to design smart high building. Sci Technol 2:8–14

    Article  Google Scholar 

  8. Salsabili N (2014) Designing constructive systems based on the spine structure. Adv Environ Biol 8:1324–1337

    Google Scholar 

  9. Al-Obaidi KM, Ismail MA, Hussein H, Rahman AMA (2017) Biomimetic building skins: an adaptive approach. Renew Sustain Energy Rev 79:1472–1491

    Article  Google Scholar 

  10. Ajay Harish Finite Element Method – What Is It? FEM and FEA Explained. https://www.simscale.com/blog/2016/10/what-is-finite-element-method/. Accessed 1 May 2018

  11. Zafarparandeh I, Erbulut DU, Lazoglu I, Ozer AF (2014) Development of a finite element model of the human cervical spine. Turk Neurosurg 24:312–318

    PubMed  Google Scholar 

  12. Finite Element Analysis (FEA). https://www.plm.automation.siemens.com/global/en/our-story/glossary/finite-element-analysis-fea/13173. Accessed 1 May 2018

  13. Introduction to finite element analysis. https://www.open.edu/openlearn/science-maths-technology/introduction-finite-element-analysis/content-section-1.5. Accessed 1 May 2018

  14. FEA software. https://www.autodesk.com/solutions/finite-element-analysis#. Accessed 1 Aug 2017

  15. Tyndyk MA, Barron V, McHugh PE, Mahoney D (2007) Generation of a finite element model of the thoracolumbar spine. Acta Bioeng Biomech 9:35

    Google Scholar 

  16. Toosizadeh N, Haghpanahi M (2011) Generating a finite element model of the cervical spine: estimating muscle forces and internal loads. Sci Iran 18:1237–1245

    Article  Google Scholar 

  17. Aroeira RMC, Pertence AE, Kemmoku DT, Greco M (2017) Three-dimensional geometric model of the middle segment of the thoracic spine based on graphical images for finite element analysis. Res Biomed Eng 33:97–104

    Article  Google Scholar 

  18. Salsabili N, Prieto Barrio MI, Santiago López J (2019) Model development by Finite Element method. CITE 2019

  19. Fagan MJ, Julian S, Siddall DJ, Mohsen AM (2002) Patient-specific spine models. Part 1: finite element analysis of the lumbar intervertebral disc—a material sensitivity study. Proc Inst Mech Eng Part H 216:299–314

    Article  CAS  Google Scholar 

  20. Finite Element Analysis. https://www.simscale.com/docs/content/simwiki/fea/whatisfea.html. Accessed 1 Aug 2017

  21. Ha SK (2006) Finite element modeling of multi-level cervical spinal segments (C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc. Med Eng Phys 28:534–541

    Article  PubMed  Google Scholar 

  22. Zhang QH, Teo EC (2008) Finite element application in implant research for treatment of lumbar degenerative disc disease. Med Eng Phys 30:1246–1256

    Article  PubMed  Google Scholar 

  23. The Finite Element Method (FEM). https://www.comsol.es/multiphysics/finite-element-method. Accessed 1 May 2018

  24. Du H, Liao S, Jiang Z, Huang H, Ning X, Jiang N, Pei J, Huang Q, Wei H (2016) Biomechanical analysis of press-extension technique on degenerative lumbar with disc herniation and staggered facet joint. Saudi Pharm J 24:305–311

    Article  PubMed  PubMed Central  Google Scholar 

  25. Anatomy and Function. https://www.umm.edu/programs/spine/health/guides/anatomy-and-function. Accessed 1 Aug 2017

  26. Shirazi-Adl A (1994) Analysis of role of bone compliance on mechanics of a lumbar motion segment. J Biomech Eng 116:408–412

    Article  CAS  PubMed  Google Scholar 

  27. Little JP, De Visser H, Pearcy MJ, Adam CJ (2008) Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy? A modeling study. Comput Methods Biomech Biomed Engin 11:95–103

    Article  CAS  PubMed  Google Scholar 

  28. Ayturk UM, Puttlitz CM (2011) Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput Methods Biomech Biomed Engin 14:695–705

    Article  PubMed  Google Scholar 

  29. Schmidt H, Galbusera F, Rohlmann A, Zander T, Wilke H-J (2012) Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur Spine J 21:663–674

    Article  Google Scholar 

  30. Kiapour A, Anderson DG, Spenciner DB, Ferrara L, Goel VK (2012) Kinematic effects of a pedicle-lengthening osteotomy for the treatment of lumbar spinal stenosis. J Neurosurg Spine 17:314–320

    Article  PubMed  Google Scholar 

  31. Lin H-M, Pan Y-N, Liu C-L, Huang L-Y, Huang C-H, Chen C-S (2013) Biomechanical comparison of the K-ROD and Dynesys dynamic spinal fixator systems—a finite element analysis. Biomed Mater Eng 23:495–505

    PubMed  Google Scholar 

  32. Park WM, Kim K, Kim YH (2013) Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med 43:1234–1240

    Article  PubMed  Google Scholar 

  33. Xu M, Yang J, Lieberman IH, Haddas R (2017) Lumbar spine finite element model for healthy subjects: development and validation. Comput Methods Biomech Biomed Engin 20:1–15

    Article  PubMed  Google Scholar 

  34. Little JP, Adam CJ (2015) Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks. Comput Methods Biomech Biomed Engin 18:676–688

    Article  CAS  PubMed  Google Scholar 

  35. Prof. Olivier de Weck DIYK Finite element method. https://en.wikipedia.org/wiki/Finite_element_method. Accessed 1 Aug 2017

  36. Kuo C-S, Hu H-T, Lin R-M, Huang K-Y, Lin P-C, Zhong Z-C, Hseih M-L (2010) Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure-a finite element study. BMC Musculoskelet Disord 11:151

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maurel N, Lavaste F, Skalli W (1997) A three-dimensional parameterized finite element model of the lower cervical spine, study of the influence of the posterior articular facets. J Biomech 30:921–931

    Article  CAS  PubMed  Google Scholar 

  38. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ (1999) Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Med Eng Phys 21:689–700

    Article  CAS  PubMed  Google Scholar 

  39. Vikram Subramani JJ (2016) The Development and Analysis of a Finite Element Model of the C45 Cervical Spine Segment Group Members: Dep Mech Nucl Eng Univ Park PA

  40. Sahani R (2015) Finite element analysis of human lumbar vertebrae in pedicle screw fixation

  41. Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L, Wilke H-J (2006) Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech 21:337–344

    Article  Google Scholar 

  42. Li Y, Fogel GR, Liao Z, Tyagi R, Zhang G, Liu W (2017) Biomechanical analysis of two-level cervical disc replacement with a stand-alone U-shaped disc implant. Spine (Phila Pa 1976) 42:1173–1181

    Article  Google Scholar 

  43. Salvatore G, Berton A, Giambini H, Ciuffreda M, Florio P, Longo UG, Denaro V, Thoreson A, An K-N (2018) Biomechanical effects of metastasis in the osteoporotic lumbar spine: a Finite Element Analysis. BMC Musculoskelet Disord 19:38

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee KK, Teo E-C, Fuss FK, Vanneuville V, Qiu T-X, Ng H-W, Yang K, Sabitzer RJ (2004) Finite-element analysis for lumbar interbody fusion under axial loading. IEEE Trans Biomed Eng 51:393–400

    Article  CAS  PubMed  Google Scholar 

  45. Ibarz E, Herrera A, Más Y, Rodríguez-Vela J, Cegoñino J, Puértolas S, Gracia L (2012) Development and kinematic verification of a finite element model for the lumbar spine: application to disc degeneration. Biomed Res Int 2013:705185

    PubMed  PubMed Central  Google Scholar 

  46. Wu JSS, Chen JH (1996) Clarification of the mechanical behaviour of spinal motion segments through a three-dimensional poroelastic mixed finite element model. Med Eng Phys 18:215–224

    Article  CAS  PubMed  Google Scholar 

  47. Zhang QH, Teo EC, Ng HW, Lee VS (2006) Finite element analysis of moment-rotation relationships for human cervical spine. J Biomech 39:189–193

    Article  PubMed  Google Scholar 

  48. Noailly J, Lacroix D, Planell JA (2003) The mechanical significance of the lumbar spine components—a finite element stress analysis. In: Proceedings of the summer bioengineering conference

  49. Ben-Hatira F, Saidane K, Mrabet A (2012) A finite element modeling of the human lumbar unit including the spinal cord. J Biomed Sci Eng 5:146

    Article  Google Scholar 

  50. Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, Goel VK, Kiapour A, Kim YH, Labus KM (2014) Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech 47:1757–1766

    Article  CAS  PubMed  Google Scholar 

  51. Campbell JQ, Coombs DJ, Rao M, Rullkoetter PJ, Petrella AJ (2016) Automated finite element meshing of the lumbar spine: verification and validation with 18 specimen-specific models. J Biomech 49:2669–2676

    Article  CAS  PubMed  Google Scholar 

  52. Kiapour A, Ambati D, Hoy RW, Goel VK (2012) Effect of graded facetectomy on biomechanics of Dynesys dynamic stabilization system. Spine (Phila Pa 1976) 37:581–589

    Article  Google Scholar 

  53. Liu C-L, Zhong Z-C, Hsu H-W, Shih S-L, Wang S-T, Hung C, Chen C-S (2011) Effect of the cord pretension of the Dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis. Eur Spine J 20:1850–1858

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shirazi-Adl A (1994) Biomechanics of the lumbar spine in sagittal/lateral moments. Spine (Phila Pa 1976) 19:2407–2414

    Article  CAS  Google Scholar 

  55. Zander T, Rohlmann A, Bergmann G (2009) Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech 24:135–142

    Article  Google Scholar 

  56. Pearcy M, Portek IAN, Shepherd J (1984) Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine (Phila Pa 1976) 9:294–297

    Article  CAS  Google Scholar 

  57. Pearcy MJ, Tibrewal SB (1984) Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine (Phila Pa 1976) 9:582–587

    Article  CAS  Google Scholar 

  58. Pearcy MJ (1985) Stereo radiography of lumbar spine motion. Acta Orthop Scand 56:1–45

    Article  Google Scholar 

  59. Wilke H-J, Neef P, Hinz B, Seidel H, Claes L (2001) Intradiscal pressure together with anthropometric data–a data set for the validation of models. Clin Biomech 16:S111–S126

    Article  Google Scholar 

Download references

Funding

There are no funding resources for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Salsabili.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Ethical approval

This article does not involve any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salsabili, N., Santiago López, J. & Prieto Barrio, M.I. Simplifying the human lumbar spine (L3/L4) material in order to create an elemental structure for the future modeling. Australas Phys Eng Sci Med 42, 689–700 (2019). https://doi.org/10.1007/s13246-019-00768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-019-00768-z

Keywords

Navigation