Skip to main content
Log in

Patient-specific dosimetry in peptide receptor radionuclide therapy: a clinical review

  • Review
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Neuroendocrine tumours (NETs) belong to a relatively rare class of neoplasms. Nonetheless, their prevalence has increased significantly during the last decades. Peptide receptor radionuclide therapy (PRRT) is a relatively new treatment approach for inoperable or metastasised NETs. The therapeutic effect is based on the binding of radiolabelled somatostatin analogue peptides with NETs’ somatostatin receptors, resulting in internal irradiation of tumours. Pre-therapeutic patient-specific dosimetry is essential to ensure that a treatment course has high levels of safety and efficacy. This paper reviews the methods applied for PRRT dosimetry, as well as the dosimetric results presented in the literature. Focus is given on data concerning the therapeutic somatostatin analogue radiopeptides 111In-[DTPA0,D-Phe1]-octreotide (111In-DTPA-octreotide), 90Y-[DOTA0,Tyr3]-octreotide (90Y-DOTATOC) and 177Lu-[DOTA0,Tyr3,Thr8]-octreotide (177Lu-DOTATATE). Following the Medical Internal Radiation Dose (MIRD) Committee formalism, dosimetric analysis demonstrates large interpatient variability in tumour and organ uptake, with kidneys and bone marrow being the critical organs. The results are dependent on the image acquisition and processing protocol, as well as the dosimetric imaging radiopharmaceutical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A et al (2008) One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 26:3063–3072. doi:10.1200/JCO.2007.15.4377

    Article  PubMed  Google Scholar 

  2. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S (2010) The pathologic classification of neuroendocrine tumors. A review of nomenclature, grading, and staging systems. Pancreas 39:707–712. doi:10.1097/MPA.0b013e3181ec124e

    Article  PubMed  Google Scholar 

  3. Bodei L (2008) Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues. Dissertation, University Medical Center Groningen

  4. Novartis Oncology (2014) Multifaceted cancer that benefits from multidisciplinary care. http://www.neuroendocrinetumor.com/health-care-professional/managing-nets.jsp. Accessed on 29 March 2014

  5. Zaknun JJ, Bodei L, Mueller-Brand J, Pavel ME, Baum RP, Hörsch D, O’Dorisio MS, O’Dorisiol TM, Howe JR, Cremonesi M et al (2013) The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:800–816. doi:10.1007/s00259-012-2330-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, Kvols LK, Krenning EP, Jamar F, Pauwels S (2005) Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose–effect relationship. J Nucl Med 46:99S–106S

    CAS  PubMed  Google Scholar 

  7. Jamar F, Barone R, Mathieu I, Walrand S, Labar D, Carlier P, de Camps J, Schran H, Chen T, Smith MC et al (2003) 86Y-DOTA0-D-Phe1-Tyr3-octreotide (SMT487): a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging 30:510–518. doi:10.1007/s00259-003-1117-1

    Article  CAS  PubMed  Google Scholar 

  8. Forrer F, Krenning EP, Kooij PP, Bernard BF, Konijnenberg M, Bakker WH, Teunissen JJ, de Jong M, van Lom K, de Herder WW et al (2009) Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA0, Tyr3]octreotate. Eur J Nucl Med Mol Imaging 36:1138–1146. doi:10.1007/s00259-009-1072-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Boerman OC, Oyen WJ, Corstens FH (2001) Between the Scylla and Charybdis of peptide radionuclide therapy: hitting the tumor and saving the kidney. Eur J Nucl Med 28:1447–1449

    Article  CAS  PubMed  Google Scholar 

  10. Konijnenberg MW (2003) Is the renal dosimetry for [90Y-DOTA0, Tyr3]Octreotide accurate enough to predict thresholds for individual patients? Cancer Biother Radiopharm 18:619–625

    Article  CAS  PubMed  Google Scholar 

  11. Sandström M, Garske U, Granberg D, Sundin A, Lundqvist HU (2010) Individualized dosimetry in patients undergoing therapy with (177)Lu- DOTA-D-Phe(1)-Tyr(3)-octreotate. Eur J Nucl Med Mol Imaging 37:212–225. doi:10.1007/s00259-009-1216-8

    Article  PubMed  Google Scholar 

  12. Krenning EP, de Jong M, Kooij PP, Breeman WA, Bakker WH, de Herder WW, van Eijck CH, Kwekkeboom DJ, Jamar F, Pauwels S et al (1999) Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. Ann Oncol 10:S23–S29

    Article  PubMed  Google Scholar 

  13. Shen S, DeNardo GL, DeNardo SJ (1994) Quantitative bremsstrahlung imaging of yttrium-90 using a Wiener filter. Med Phys 21:1409–1417

    Article  CAS  PubMed  Google Scholar 

  14. Öberg K (2012) Molecular imaging and radiotherapy: theranostics for personalized patient management of neuroendocrine tumors (NETs). Theranostics 2:448–458

    Article  PubMed Central  PubMed  Google Scholar 

  15. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, Robertson JS, Howell RW, Wessels BW, Fisher DR et al (1999) MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S

    CAS  PubMed  Google Scholar 

  16. Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37:538–546

    CAS  PubMed  Google Scholar 

  17. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  18. Sjögreen K, Ljungberg M, Wingårdh K, Minarik D, Strand SE (2005) The LundADose method for planar image activity quantification and absorbed-dose assessment in radionuclide therapy. Cancer Biother Radiopharm 20:92–97

    Article  PubMed  Google Scholar 

  19. Philips imalytics (2014) Research Dosimetry Solution- STRATOS and STRATOS+. http://www.imalytics.philips.com/sites/philipsimalytics/products/dosimetry/dosimetry.page. Accessed on 10 March 2014

  20. de Jong M, Breeman WA, Bakker WH, Kooij PP, Bernard BF, Hofland LJ, Visser TJ, Srinivasan A, Schmidt MA, Erion JL et al (1998) Comparison of 111In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res 58:437–441

    PubMed  Google Scholar 

  21. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, de Jong M, de Herder WW, Krenning EP (2010) Somatostatin receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 17:R53–R73. doi:10.1677/ERC-09-0078

    Article  CAS  PubMed  Google Scholar 

  22. Cremonesi M, Ferrari M, Bodei L, Tosi G, Paganelli GM (2006) Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med 47:1467–1475

    CAS  PubMed  Google Scholar 

  23. Valkema R, De Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ, De Jong FH, Christiansen A, Kam BL, De Herder WW et al (2002) Phase I study of peptide receptor radionuclide therapy with [In-DTPA]-octreotide: the Rotterdam experience. Semin Nucl Med 32:110–122

    Article  PubMed  Google Scholar 

  24. Waldherr C, Pless M, Maecke HR, Haldemann A, Mueller-Brand JP (2001) The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol 12:941–945

    Article  CAS  PubMed  Google Scholar 

  25. Waldherr C, Pless M, Maecke HR, Schumacher T, Crazzolara A, Nitzsche EU, Haldemann A, Mueller-Brand J (2002) Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq 90Y-DOTATOC. J Nucl Med 43:610–616

    CAS  PubMed  Google Scholar 

  26. Bodei L, Cremonesi M, Zoboli S, Grana C, Bartolomei M, Rocca P, Caracciolo M, Mäcke HR, Chinol M, Paganelli G (2003) Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging 3:207–216. doi:10.1007/s00259-002-1023-y

    Article  Google Scholar 

  27. Valkema R, Pauwels S, Kvols L, Jamar F, Barone R, Bakker WH, Lasher J, Krenning EP (2003) Long-term follow-up of a phase 1 study of peptide receptor radionuclide therapy (PRRT) with [90Y-DOTA0, Tyr3]-octreotide in patients with somatostatin receptor positive tumours. [abstract]. Eur J Nucl Med Mol Imaging 30:S232

    Article  Google Scholar 

  28. de Jong M, Krenning EP (2002) New advances in peptide receptor radionuclide therapy. J Nucl Med 43:617–620

    PubMed  Google Scholar 

  29. Kwekkeboom DJ, Bakker WH, Kam BL, Teunissen JJM, Kooij PPM, Herder WW, Feelders RA, Eijck CHJ, Jong M, Srinivasan A et al (2003) Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA(0), Tyr3]octreotate. Eur J Nucl Med Mol Imaging 30:417–422. doi:10.1007/s00259-002-1050-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bodei L, Cremonesi M, Grana CM, Fazio N, Iodice S, Baio SM, Bartolomei M, Lombardo D, Ferrari ME, Sansovini M et al (2011) Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging 38:2125–2135. doi:10.1007/s00259-011-1902-1

    Article  CAS  PubMed  Google Scholar 

  31. Claringbold PG, Brayshaw PA, Price RA, Turner H (2011) Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 38:302–311. doi:10.1007/s00259-010-1631-x

    Article  CAS  PubMed  Google Scholar 

  32. Sansovini M, Severi S, Ambrosetti A, Monti M, Nanni O, Sarnelli A, Bodei L, Garaboldi L, Bartolomei M, Paganelli G (2013) Treatment with the radiolabelled somatostatin analog 177Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology 97:347–354. doi:10.1159/000348394

    Article  CAS  PubMed  Google Scholar 

  33. Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, Barone R, Walrand S, Kooij PP, Bakker WH et al (2005) Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J Nucl Med 46:83S–91S

    CAS  PubMed  Google Scholar 

  34. Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, Krenning EP, Jamar F (2005) Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med 46:92S–98S

    CAS  PubMed  Google Scholar 

  35. Kwekkeboom DJ, Kooij PP, Bakker WH, Mäcke HR, Krenning EP (1999) Comparison of 111In-DOTA-Tyr3-octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumor uptake. J Nucl Med 40:762–767

    CAS  PubMed  Google Scholar 

  36. Cremonesi M, Ferrari M, Zoboli S, Chinol M, Stabin MG, Orsi F, Maecke HR, Jermann E, Robertson C, Fiorenza M et al (1999) Biokinetics and dosimetry in patients administered with 111In-DOTA-Tyr3-octreotide: implications for internal radiotherapy with 90Y-DOTATOC. Eur J Nucl Med 26:877–886

    Article  CAS  PubMed  Google Scholar 

  37. Forrer F, Uusijärvi H, Waldherr C, Cremonesi M, Bernhardt P, Mueller-Brand J, Maecke HR (2004) A comparison of 111In-DOTATOC and 111In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 31:1257–1262. doi:10.1007/s00259-004-1553-6

    Article  CAS  PubMed  Google Scholar 

  38. Cremonesi M, Botta F, Di Dia A, Ferrari M, Bodei L, De Cicco C, Rossi A, Bartolomei M, Mei R, Severi SF et al (2010) Dosimetry for treatment with radiolabelled somatostatin analogues. A review. J Nucl Med Mol Imaging 54:37–51

    CAS  Google Scholar 

  39. Förster GJ, Engelbach MJ, Brockmann JJ, Reber HJ, Buchholz HG, Mäcke HR, Rösch FR, Herzog HR, Bartenstein PR (2001) Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of 86Y-DOTATOC and 111In-DTPA-octreotide. Eur J Nucl Med 28:1743–1750. doi:10.1007/s002590100628

    Article  PubMed  Google Scholar 

  40. Decristoforo C, Mather SJ, Cholewinski W, Donnemiller E, Riccabona G, Moncayo R (2000) 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours: first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med 27:1318–1325. doi:10.1007/s002590000289

    Article  CAS  PubMed  Google Scholar 

  41. Hubalewska-Dydejczyk A, Fröss-Baron K, Mikołajczak R, Maecke HR, Huszno B, Pach D, Sowa-Staszczak A, Janota B, Szybiński P, Kulig J (2006) 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years’ experience. Eur J Nucl Med Mol Imaging 33:1123–1133. doi:10.1007/s00259-006-0113-7

    Article  CAS  PubMed  Google Scholar 

  42. Cwikla JB, Mikolajczak R, Pawlak D, Buscombe JR, Nasierowska-Guttmejer A, Bator A, Maecke HR, Walecki J (2008) Initial direct comparison of 99mTc-TOC and 99mTc-TATE in identifying sites of disease in patients with proven GEP NETs. J Nucl Med 49:1060–1065. doi:10.2967/jnumed.107.046961

    Article  PubMed  Google Scholar 

  43. Snyder WS, Ford MR, Warner GG, Watson SB (1975) S” absorbed dose per unit cumulated activity for selected radionuclides and organs. Mird pamphlet no.11. Society of Nuclear Medicine, New York

    Google Scholar 

  44. Snyder WS, Ford, Warner GG (1978) Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. Mird PAMPHLET No. 5 Revised. Society of Nuclear Medicine, New York

    Google Scholar 

  45. Stabin MG, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85:294–310

    Article  CAS  PubMed  Google Scholar 

  46. Stabin MG, Emmons MA, Segars WP, Fernald MJ (2009) The Vanderbilt University reference adult and pediatric phantom series. In: Xu XG (ed) Handbook of anatomical models for radiation dosimetry. Taylor & Francis, Philadelphia, pp 337–346

    Chapter  Google Scholar 

  47. Stabin MG (2008) Update: the case for patient-specific dosimetry in radionuclide therapy. Cancer Biother Radiopharm 23:273–284. doi:10.1089/cbr.2007.0445

    Article  CAS  PubMed  Google Scholar 

  48. Shen S, Meredith RF, Duan J, Macey DJ, Khazaeli MB, Robert F, LoBuglio AF (2002) Improved prediction of myelotoxicity using a patient-specific imaging dose estimate for non-marrow-targeting (90)Y-antibody therapy. J Nucl Med 43:1245–1253

    CAS  PubMed  Google Scholar 

  49. Council Directive 97/43/EURATOM (1997)

  50. Helisch A, Förster GJ, Reber H, Buchholz HG, Arnold R, Göke B, Weber MM, Wiedenmann B, Pauwels S, Haus U et al (2004) Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging 31:1386–1392. doi:10.1007/s00259-004-1561-6

    Article  CAS  PubMed  Google Scholar 

  51. Garkavij M, Nickel M, Sjögreen-Gleisner K, Ljungberg M, Ohlsson T, Wingårdh K, Strand SE, Tennvall J (2010) 177Lu-[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: analysis of dosimetry with impact on future therapeutic strategy. Cancer 116:1084–1092. doi:10.1002/cncr.24796

    Article  CAS  PubMed  Google Scholar 

  52. Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G (2010) EANM dosimetry committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging 37:1238–1250. doi:10.1007/s00259-010-1422-4

    Article  PubMed  Google Scholar 

  53. Clairand I, Ricard M, Gouriou J, Di Paola M, Aubert B (1999) DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry. J Nucl Med 40:1517–1523

    CAS  PubMed  Google Scholar 

  54. Medicinsk strålningsfysik, Lund (2014) LundaDose program. http://www.msf.lu.se/forskning/nuclear-medicine-group/lundadose-program. Accessed on 19 Sept 2014

  55. Barone R, Walrand S, Konijnenberg M, Valkema R, Kvols LK, Krenning EP, Pauwels S, Jamar F (2008) Therapy using labelled somatostatin analogues: comparison of the absorbed doses with 111In-DTPA-D-Phe1-octreotide and yttrium-labelled DOTA-D-Phe1-Tyr3-octreotide. Nucl Med Commun 29:283–290

    Article  CAS  PubMed  Google Scholar 

  56. Gabriel M, Decristoforo C, Donnemiller E, Ulmer H, Watfah Rychlinski C, Mather SJ, Moncayo R (2003) An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med 44:708–716

    CAS  PubMed  Google Scholar 

  57. González-Vázquez A, Ferro-Flores G, Arteaga de Murphy C, Gutiérrez-García Z (2006) Biokinetics and dosimetry in patients of 99mTc-EDDA/HYNIC-Tyr3-octreotide prepared from lyophilized kits. Appl Radiat Isot 64:792–797

    Article  PubMed  Google Scholar 

  58. Grimes J, Celler A, Birkenfeld B, Shcherbinin S, Listewnik MH, Piwowarska-Bilska H, Mikolajczak R, Zorga P (2011) Patient-specific radiation dosimetry of 99mTc-HYNIC-Tyr3-octreotide in neuroendocrine tumors. J Nucl Med 52:1474–1481. doi:10.2967/jnumed.111.088203

    Article  CAS  PubMed  Google Scholar 

  59. Chalkia MT, Stefanoyiannis AP, Prentakis A, Chatziioannou SN, Armeniakos I, Geronikola-Trapali X, Liotsou T, Efstathopoulos EP (2013) Patient-specific dosimetry of 99mTc-HYNIC-Tyr3-Octreotide in patients with neuroendocrine tumours. Annual Congress of the European Association of Nuclear Medicine, Lyon. http://www.eanm13.eanm.org/abstracts/abstract_search_result.php?navId=25)

  60. de Jong M, Breeman W, Valkema R, Bernard BF, Krenning EP (2005) Combination radionuclide therapy using 177Lu and 90Y-labeled somatostatin analogs. J Nucl Med 46:13S–17S

    PubMed  Google Scholar 

  61. Villard L, Romer A, Marincek N, Brunner P, Koller MT, Schindler C, Ng QK, Mäcke H, Müller-Brand J, Rochlitz C et al (2012) Cohort study of somatostatin-based radiopeptide therapy with [90Y-DOTA]-TOC versus [90Y-DOTA]-TOC plus [177Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol 30:1100–1106. doi:10.1200/JCO.2011.37.2151

    Article  CAS  PubMed  Google Scholar 

  62. Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, Mikołajczak R, Sowa-Staszczak A, Pawlak D (2011) Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging 38:1788–1797. doi:10.1007/s00259-011-1833-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Berker Y, Goedicke A, Kemerink GJ, Aach T, Schweizer B (2011) Activity quantification combining conjugate-view planar scintigraphies and SPECT/CT data for patient-specific 3-D dosimetry in radionuclide therapy. Eur J Nucl Med Mol Imaging 38:2173–2185. doi:10.1007/s00259-011-1889-7

    Article  CAS  PubMed  Google Scholar 

  64. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    Article  CAS  PubMed  Google Scholar 

  65. Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ (1994) Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med 35:1381–1389

    CAS  PubMed  Google Scholar 

  66. Ito S, Kurosawa H, Kasahara H, Teraoka S, Ariga E, Deji S, Hirota M, Saze T, Minamizawa T, Nishizawa K (2009) (90)Y bremsstrahlung emission computed tomography using gamma cameras. Ann Nucl Med 23:257–267. doi:10.1007/s12149-009-0233-9

    Article  CAS  PubMed  Google Scholar 

  67. Minarik D, Sjögreen Gleisner K, Ljungberg M (2008) Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol 53:5689–5703. doi:10.2967/jnumed.110.079897

    Article  CAS  PubMed  Google Scholar 

  68. Walrand S, Jamar F, van Elmbt L, Lhommel R, Bekonde EB, Pauwels S (2010) 4-Step renal dosimetry dependent on cortex geometry applied to 90Y peptide receptor radiotherapy: evaluation using a fillable kidney phantom imaged by 90Y PET. J Nucl Med 51:1969–1973. doi:10.2967/jnumed.110.080093

    Article  PubMed  Google Scholar 

  69. Minarik D, Sjögreen-Gleisner K, Linden O, Wingårdh K, Tennvall J, Strand SE, Ljungberg M (2010) 90Y bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. J Nucl Med 51:1974–1978. doi:10.2967/jnumed.110.079897

    Article  PubMed  Google Scholar 

  70. Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA (2007) A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot 65:318–327

    Article  CAS  PubMed  Google Scholar 

  71. Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Walrand S (2010) Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging 37:1654–1662. doi:10.1007/s00259-010-1470-9

    Article  PubMed  Google Scholar 

  72. de Jong M, Valkema R, van Gameren A, van Boven H, Bex A, van de Weyer EP, Burggraaf JD, Körner M, Reubi JC, Krenning EP (2004) Inhomogeneous localization of radioactivity in the human kidney after injection of [111In-DTPA]octreotide. J Nucl Med 45:1168–1171

    PubMed  Google Scholar 

  73. Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, Clairand I, Sgouros G (2003) MIRD pamphlet No. 19: absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J Nucl Med 44:1113–1147

    PubMed  Google Scholar 

  74. Siegel JA, Stabin MG, Sharkey RM (2010) Renal dosimetry in peptide radionuclide receptor therapy. Cancer Biother Radiopharm 25:581–588. doi:10.1089/cbr.2010.0805

    Article  CAS  PubMed  Google Scholar 

  75. Valkema R, Pauwels S, Kvols LK, Barone R, Jamar F, Bakker WH, Kwekkeboom DJ, Bouterfa H, Krenning EP (2006) Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]Octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 36:147–156. doi:10.1053/j.semnuclmed.2006.01.001

    Article  PubMed  Google Scholar 

  76. Imhof A, Brunner P, Marincek N, Briel M, Schindler C, Rasch H, Mäcke HR, Rochlitz C, Müller-Brand J, Walter MA (2011) Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 29:2416–2423. doi:10.1200/JCO.2010.33.7873

    Article  CAS  PubMed  Google Scholar 

  77. Kontogeorgakos DK, Dimitriou PA, Limouris GS, Vlahos LJ (2006) Patient-specific dosimetry calculations using mathematic models of different anatomic sizes during therapy with 111In-DTPA-D-Phe1- octreotide infusions after catheterization of the hepatic artery. J Nucl Med 47:1476–1482

    CAS  PubMed  Google Scholar 

  78. Chinol M, Bodei L, Cremonesi M, Paganelli G (2002) Receptor-mediated radiotherapy with 90Y-DOTA-DPhe1-Tyr3-octreotide: the experience of the European institute of oncology group. Semin Nucl Med 32:141–147. doi:10.1053/snuc.2002.31563

  79. Rodrigues M, Traub-Weidinger T, Li S, Ibi B, Virgolini I (2006) Comparison of 111In-DOTA-DPhe1-Tyr3-octreotide and 111In-DOTA-lanreotide scintigraphy and dosimetry in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 33:532–540. doi:10.1007/s00259-005-0020-3

    Article  PubMed  Google Scholar 

  80. Hindorf C, Chittenden S, Causer L, Lewington VJ, Mäcke HR, Flux GD (2007) Dosimetry for 90Y-DOTATOC therapies in patients with neuroendocrine tumors. Cancer Biother Radiopharm 22:130–135. doi:10.1089/cbr.2007.306

    Article  CAS  PubMed  Google Scholar 

  81. Grassi E, Fioroni F, Sghedoni R, Sarti MA, Asti M, Fraternali A, Versari A, Salvo D, Borasi G (2008) Retrospective evaluation of 111In-DOTATOC dosimetry in patients enrolled for 90Y-DOTATOC PRRT. J Nucl Med 49:322P

    Google Scholar 

  82. Sandström M, Garske-Román U, Granberg D, Johansson S, Widström C, Eriksson B, Sundin A, Lundqvist H, Lubberink M (2013) Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu- DOTA-Octreotate treatment. J Nucl Med 54:33–41. doi:10.2967/jnumed.112.107524

    Article  PubMed  Google Scholar 

  83. Gupta SK, Singla S, Thakral P, Bal CS (2013) Dosimetric analyses of kidneys, liver, spleen, pituitary gland, and neuroendocrine tumors of patients treated with 177Lu-DOTATATE. Clin Nucl Med 38:188–194. doi:10.1097/RLU.0b013e3182814ac1

    Article  PubMed  Google Scholar 

  84. Schuchardt C, Kulkarni HR, Prasad V, Zachert C, Müller D, Baum RP (2013) The Bad Berka dose protocol: comparative results of dosimetry in peptide receptor radionuclide therapy using 177Lu-DOTATATE, 177Lu-DOTANOC, and 177Lu-DOTATOC. Recent Results Cancer Res 194:519–536. doi:10.1007/978-3-642-27994-2_30

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Stefanoyiannis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalkia, M.T., Stefanoyiannis, A.P., Chatziioannou, S.N. et al. Patient-specific dosimetry in peptide receptor radionuclide therapy: a clinical review. Australas Phys Eng Sci Med 38, 7–22 (2015). https://doi.org/10.1007/s13246-014-0312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0312-7

Keywords

Navigation