Skip to main content
Log in

An investigation into the accuracy of AcurosTM BV in heterogeneous phantoms for a 192Ir HDR source using LiF TLDs

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the accuracy of the new AcurosTM BV algorithm using well characterized LiF:Mg,Ti TLD 100 in heterogeneous phantoms. TLDs were calibrated using an 192Ir source and the AAPM TG-43 calculated dose. The Tölli and Johansson Large Cavity principle and Modified Bragg Gray principle methods confirm the dose calculated by TG-43 at a distance of 5 cm from the source to within 4 %. These calibrated TLDs were used to measure the dose in heterogeneous phantoms containing air, stainless steel, bone and titanium. The TLD results were compared with the AAPM TG-43 calculated dose and the Acuros calculated dose. Previous studies by other authors have shown a change in TLD response with depth when irradiated with an 192Ir source. This TLD depth dependence was assessed by performing measurements at different depths in a water phantom with an 192Ir source. The variation in the TLD response with depth in a water phantom was not found to be statistically significant for the distances investigated. The TLDs agreed with AcurosTM BV within 1.4 % in the air phantom, 3.2 % in the stainless steel phantom, 3 % in the bone phantom and 5.1 % in the titanium phantom. The TLDs showed a larger discrepancy when compared to TG-43 with a maximum deviation of 9.3 % in the air phantom, −11.1 % in the stainless steel phantom, −14.6 % in the bone phantom and −24.6 % in the titanium phantom. The results have shown that Acuros accounts for the heterogeneities investigated with a maximum deviation of −5.1 %. The uncertainty associated with the TLDs calibrated in the PMMA phantom is ±8.2 % (2SD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IAEA Technical Report Series 398 (2004) Absorbed dose determination in External Beam Radiotherapy: an International Code of Practice for Dosimetry based on standards of absorbed dose to water, Vienna

  2. Haughey A, Coalter G, Mugabe K (2011) Evaluation of linear array MOSFET detectors for in vivo dosimetry to measure rectal dose in HDR brachytherapy Australas. Phys Eng Sci Med 34:361–366

    Article  Google Scholar 

  3. Tanderup K, Beddar S, Andersen CE, Kertzscher G, Cygler J (2013) In vivo dosimetry in brachytherapy. Med Phys 40:070902

    Article  PubMed  Google Scholar 

  4. Tedgren C, Hedman A, Grindborg J, Carlsson GA (2011) Response of LiF:Mg, Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV). Med Phys 38:5539–5550

    Article  PubMed  CAS  Google Scholar 

  5. Horowtiz YS, Moscovitch M (2013) Highlights and pitfalls of 20 years of application of computerised glow curve analysis to thermoluminescence research and dosimetry. Radiat Prot Dosimetry 153(1):1–22

    Article  Google Scholar 

  6. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS et al (2004) Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys 31:633–674

    Article  PubMed  Google Scholar 

  7. Das R, Toye W, Kron T, Williams S, Duchesne G (2007) Thermoluminescence dosimetry for in vivo verification of high dose rate brachytherapy for prostate cancer. Australas Phys Eng Sci Med 30:178–184

    Article  PubMed  CAS  Google Scholar 

  8. Anagnostopoulos G, Baltas D, Geretschlaeger A, Martin T, Papagiannis P, Tselis N et al (2003) In-vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CT-based planning for the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 57:1183–1191

    Article  PubMed  CAS  Google Scholar 

  9. Tedgren C, Elia R, Hedtjarn H, Olsson S, Carlsson GA (2012) Determination of absorbed dose to water around a clinical HDR 192Ir source using LiF:Mg, Ti TLDs demonstrates an LET dependence of detector response. Med Phys 39:1133–1140

    Article  Google Scholar 

  10. Podgoršak EB (2006) Radiation Physics for Medical Physicists. Springer, Berlin

    Google Scholar 

  11. Karaiskos P, Angelopoulos A, Sakelliou L, Sandilos P, Antypas C, Vlachos L et al (1998) Monte Carlo and TLD dosimetry of an 192Ir high-dose-rate brachytherapy source. Med Phys 25:1975–1984

    Article  PubMed  CAS  Google Scholar 

  12. Pradhan AS, Quast U (2000) In-phantom response of LiF TLD-100 for dosimetry of 192Ir HDR source. Med Phys 27:1025–1029

    Article  PubMed  CAS  Google Scholar 

  13. Tedgren AC, Carlsson GA (2009) Influence of phantom material and dimensions on experimental 192Ir dosimetry. Med Phys 36:2228–2235

    Article  Google Scholar 

  14. Davis SD, Ross CK, Mobit PN, Van der Zwan L, Chase WJ, Shortt KR (2003) The response of LiF thermoluminescence dosemeters to photon beams in the energy range from 30 kV x rays to 60Co gamma rays. Radiat Prot Dosimetry 106(1):33–43

    Article  PubMed  CAS  Google Scholar 

  15. Nunn AA, Davis SD, Micka JA, DeWerd LA (2008) LiF:Mg, Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20–250 kVp relative to 60Co. Med Phys 35(5):1859–1869

    Article  PubMed  CAS  Google Scholar 

  16. Lambert J, Nakano T, Law S, Elsey J, McKenzie D, Suchowerska N (2007) In-vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD and scintillation detector. Med Phys 34:1759–1765

    Article  PubMed  CAS  Google Scholar 

  17. Meigooni S, Meli JA, Nath R (1988) Influence of the variation of energy spectra with depth in the dosimetry of 192Ir using LiF TLD. Phys Med Biol 33:1159–1170

    Article  PubMed  CAS  Google Scholar 

  18. Meli JA, Meigooni AS, Nath R (1988) On the choice of phantom material for the dosimetry of 192Ir sources. Int J Radiat Oncol Biol Phys 14:587–594

    Article  PubMed  CAS  Google Scholar 

  19. Report on the Task Group on Reference man (1975). ICRP Publication 23. Ann ICRP. Pergamon

  20. Tölli H, Johansson K (1998) Absorbed dose determination at short distance from 60Co and 192Ir brachytherapy sources. Phys Med Biol 43:3183–3194

    Article  PubMed  Google Scholar 

  21. International Atomic Energy Agency TECDOC 1274 (2002). Calibration of photon and beta ray sources used in brachytherapy. Vienna

  22. Johns HE, Cunningham J (1983) The Physics of Radiology. Charles C Thomas Publisher, Springfield

    Google Scholar 

  23. Tölli H, Johansson K (1998) Correction factors for Farmer-type chambers for absorbed dose determination in 60Co and 192Ir brachytherapy dosimetry. Phys Med Biol 43:3171–3181

    Article  PubMed  Google Scholar 

  24. International Atomic Energy Agency Technical Report Series 277 (1997). Absorbed dose determination in photon and electron beams. Vienna

  25. Beaulieu L, Tedgren AC, Carrier J-F, Davis SD, Mourtada F, Rivard MJ et al (2012) Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation. Med Phys 39(10):6208–6236

    Article  PubMed  Google Scholar 

  26. Petrokokkinos L, Zourari K, Pantelis E, Moutsatsos A, Karaiskos P (2011) Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator. Med Phys 38(4):1981–1992

    Article  PubMed  CAS  Google Scholar 

  27. Nath R, Anderson LL, Meli JA, Olch AJ, Stitt JA, Williamson JF (1997) Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. Med Phys 24(10):1557–1598

    Article  PubMed  CAS  Google Scholar 

  28. Brezovich I, Duan J, Pareel P, Fiveash J, Ezekiel M (2000) In-vivo urethral dose measurements: a method to verify high dose rate prostate treatments. Med Phys 27:2297–2301

    Article  PubMed  CAS  Google Scholar 

  29. Haworth A, Butler DJ, Wilfert L, Ebert MA, Todd SP, Hayton A et al (2013) Comparison of TLD calibration methods for 192Ir dosimetry. J Appl Clin Med Phys 14(1):258–272

    Google Scholar 

  30. Hood C, Duggan L, Bazley S, Denham J, Kron T (2006) Miniature LiF:Mg, Cu, P TLDs to study the effect of applicator material in 192-Ir brachytherapy. Australas Phys Eng Sci Med 29:300–302

    Article  PubMed  CAS  Google Scholar 

  31. Lymperopoulou G, Pantelis E, Papagiannis P, Rozaki-Mavrouli H, Sakelliou L, Baltas D, Karaiskos P (2004) A Monte Carlo dosimetry study of vaginal Ir 192 brachytherapy applications with a shielded cylindrical applicator set. Med Phys 31:3080–3086

    Article  PubMed  CAS  Google Scholar 

  32. Rivard M, Venselaar J, Beaulieu L (2009) The evolution of brachytherapy treatment planning. Med Phys 36(6):2136–2150

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Annette Haworth for her valuable advice and Carl Whyatt for his hard work and skill in manufacturing the phantoms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siobhan Manning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manning, S., Nyathi, T. An investigation into the accuracy of AcurosTM BV in heterogeneous phantoms for a 192Ir HDR source using LiF TLDs. Australas Phys Eng Sci Med 37, 505–514 (2014). https://doi.org/10.1007/s13246-014-0279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0279-4

Keywords

Navigation