Skip to main content
Log in

Spatial Distribution of Platelet Deposition in Stented Arterial Models Under Physiologic Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper presents dynamic flow experiments with fluorescently labeled platelets to allow for spatial observation of wall attachment in inter-strut spacings, to investigate their relationship to flow patterns. Human blood with fluorescently labeled platelets was circulated through an in vitro system that produced physiologic pulsatile flow in a parallel plate flow chamber that contained three different stent designs that feature completely recirculating flow, partially recirculating flow (intermediate strut spacing), and completely reattached flow. Highly resolved spatial distribution of platelets was obtained by imaging fluorescently labeled platelets between the struts. Platelet deposition was higher in areas where flow is directed towards the wall, and lower in areas where flow is directed away from the wall. Flow detachment and reattachment points exhibited very low platelet deposition. Platelet deposition within intermediate strut spacing continued to increase throughout the experimental period, indicating that the deposition rate had not plateaued unlike other strut spacings. The spatial uniformity and temporal increase in platelet deposition for the intermediate strut spacing confirms and helps explain our previous finding that platelet deposition was highest with this strut spacing. Further experimental investigations will include more complex three-dimensional geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry, J. L., A. Santamarina, J. E. Moore Jr., S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.

    Article  Google Scholar 

  2. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K.Dewanjee. Fluid mechanics of Arterial Stenosis: Relationship to the development of mural thrombus. Ann. Biomed. Eng. 25:344–356, 1997.

    Google Scholar 

  3. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Steady flow in an Aneurysm model: Correlation between fluid dynamics and blood platelet deposition. J. Biomech. Engg. 118:280–286, 1996.

    Google Scholar 

  4. Carlier, S. G., L. C. A. van Damme, C. P. Blommerde, J. J. Wentzel, G. van Langehove, S. Verheye, M. M. Kockx, M. W. M. Knaapen, C. Cheng, F. Gijsen, D. J. Duncker, N. Stergiopulos, C. J. Slager, P. W. Serruys, and R. Krams. Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation: Inhibition through reduction of inflammation? Circulation 107:2741–2746, 2003.

    Article  Google Scholar 

  5. Cejna, M., S. Thurnher, H. Illiasch, W. Horvath, P. Waldenberger, K. Hornik, and J. Lammer. PTA versus Palmaz stent placement in femoropopliteal artery obstructions: A multicenter prospective randomized study. J. Vasc. Interv. Radiol. Jan 12(1):23–31, 2001.

    Google Scholar 

  6. Crewe, K. H., and I. A. Feuerstein. Platelet adhesion to fibrinogen-coated glass at an abrupt tubular expansion viewed with fluorescent-video microscopy. Biorheology 23(5):443–452, 1986.

    Google Scholar 

  7. David, T., S. Thomas, and P. G. Walker. Platelet deposition in stagnation point flow: An analytical study and computational simulation. Med. Eng. Phys. 23(5):299–312, 2001.

    Article  Google Scholar 

  8. Eigenthaler, M., U. R. Schwarz, B. Schinke, and A. Kobsar. Activated platelets induce migration, proliferation, and gene expression in human vascular endothelial cells. J. Thromb. Haemost. 1(1):12–18, July, 2003, PO164.

    Google Scholar 

  9. Gijsen, J. H., R. M. Oortman, J. J. Wentzel, J. C. H. Schuurbiers, K. Tanabe, M. Degertekin, J. M. Ligthart, A. Thury, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Usefulness of shear stress pattern in predicting neointima distribution in Sirolimus-eluting stents in coronary arteries. Am. J. Cardiol. 92:1325–1328, 2003.

    Article  Google Scholar 

  10. Grenacher, L., T. Saam, A. Geier, S. Muller-Hulsbeck, M. Cejna, G. W. Kauffmann, and G. M. Richter. PTA versus Palmaz stent placement in femoropopliteal artery stenoses: Results of a multicenter prospective randomized study (REFSA). Rofo. 176(9):1302–1310, 2004.

    Google Scholar 

  11. He, Y., N. Duraiswamy, A. O. Frank, and J. E. Moore Jr. Blood flow in stented arteries: A parametric comparison of strut design patterns in 3D. J. Biomech. Eng. 127(4):637–647, 2005.

    Google Scholar 

  12. Hideto, M., M. Sugimoto, T. Mizuno, S. Tsuji, S. Miyata, M. Matsuda, and A. Yoshioka. Distinct and concerted functions of von Willebrand factor and fibrinogen in mural thrombus growth under high shear flow. Blood 100(10):3604–3610, 2002.

    Google Scholar 

  13. Jeong, M. H., W. G. Owen, M. E. Staab, S. S. Srivatsa, G. Sangiorgi, M. Stewart, D. R. Holmes Jr., and R. S. Schwartz. Porcine model of stent thrombosis: Platelets are the primary component of acute stent closure. Cathet. Cardiovasc. Diagn. 38(1):38–43, 1996.

    Article  Google Scholar 

  14. Karino, T., and H. L. Goldsmith. Adhesion of human platelets to collagen on the wall distal to a tubular expansion. Microvasc. Res. 17:238–262, 1979.

    Google Scholar 

  15. Kastrati, A. J., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schuhlen, M. Seyfarth, C. Schmitt, R. Blasini, F. J. Neumann, and A. Schomig. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.

    Article  Google Scholar 

  16. Lau, K. W., A Johan, U. Sigwart, and J. S. Hung. A stent is not just a stent: Stent construction and design do matter in its clinical performance. Singapore Med. J. 45(7):305–312, 2004.

    Google Scholar 

  17. Longest, P. W., and C. Kleinstreuer. Comparison of blood particle deposition models for non-parallel flow domains. J. Biomech. 36(3): 421–430, 2003.

    Google Scholar 

  18. Morice, M. C., P. W. Serruys, J. E. Sousa, J. Fajadet, E. Ban Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, F. Molnar, and R. Falotico. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 349:1315–1323, 2002.

    Google Scholar 

  19. Pache, A., J. Kastrati, H. Mehilli, H. Schuhlen, F. Dotzer, J. Hausleiter, M. Fleckenstein, F. J. Neumann, U. Sattelberger, C. Schmitt, M. Muller, J. Dirschinger, and A. Schomig. Intracoronary stenting and angiographic results: Strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41(8):1283–1288, 2003.

    Article  Google Scholar 

  20. Robaina, S., B. Jayachandran, Y. He, A. Frank, M. Moreno, J. E. Moore Jr., and R. T. Schoephoerster. Platelet adhesion to stimulated stented surfaces. J. Endovascular. Ther. 10:978–986, 2003.

    Google Scholar 

  21. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.

    Google Scholar 

  22. Rolland, P. H., C. Mekkaoui, V. Vidal, J. L. Berry, J. E. Moore Jr., M. Moreno, P. Amabile, and J. M. Bartoli. Compliance matching stent placement in the carotid artery of the swine promotes optimal blood flow and attenuates restenosis. Eur. J. Vasc. Endovasc. Surg. 28:431–438, 2004.

    Article  Google Scholar 

  23. Tominaga, R., H. E. Kambic, H. Emoto, H. Harasaki, C. Sutton, and J. Hollman. Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. Am. Heart. J. 123:21–28, 1992.

    Article  Google Scholar 

  24. Virmani, R., F. D. Kolodgie, A. Farb, and A. Lafont. Drug eluting stents: Are human and animal studies comparable? Heart 89:133–138, 2003.

    Article  Google Scholar 

  25. Weyrich, A. S., S. M. Prescott, and G. A. Zimmerman. Platelets, endothelial cells, inflammatory chemokines, and restenosis: Complex signaling in the vascular play book. Circulation. 106(12):1433–1435, 2002.

    Article  Google Scholar 

  26. He, Y. Computational analysis of blood flow in a stented chamber under physiologic flow conditions. Master's Thesis, Florida International University 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Schoephoerster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duraiswamy, N., Jayachandran, B., Byrne, J. et al. Spatial Distribution of Platelet Deposition in Stented Arterial Models Under Physiologic Flow. Ann Biomed Eng 33, 1767–1777 (2005). https://doi.org/10.1007/s10439-005-7598-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-7598-2

Keywords

Navigation