Skip to main content
Log in

Epigenome editing strategies for plants: a mini review

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Recent development of genome editing (GE) tools has revolutionized crop improvement due to their ability to perform targeted genetic modifications. Among different generations of GE tools, CRISPR-Cas9 and its variants have become the most preferred tools due to their simplicity compared to the other GE tools. Recent studies have demonstrated employment of modified GE tools to introduce heritable epigenetic changes. In this review, we briefly describe what constitutes epigenome, epigenome editing (EGE), and some of the recently developed protein scaffold platforms such as, SunTag and SSSavi systems, being used for efficient EGE. We then discuss various CRISPR-Cas-based EGE approaches for modulating gene expression and the corresponding phenotype. Mainly, these approaches include targeted DNA methylation/demethylation, histone modification, and base editor-mediated conversion of promoter cytosines to other bases. Of these, the last EGE strategy involves genetic alteration to introduce epigenetic changes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell. 2016;167(1):219-232 e214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aravind B, Molla K, Mangrauthia SK, Mohannath G. Strategies to improve genome editing efficiency in crop plants. J Plant Biochem Biotechnol. 2023;32(4):661–72.

    Article  Google Scholar 

  4. Auclair G, Weber M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie. 2012;94(11):2202–11.

    Article  CAS  PubMed  Google Scholar 

  5. Bestor TH. Methylation meets acetylation. Nature. 1998;393(6683):311–2.

    Article  CAS  PubMed  Google Scholar 

  6. Bewick AJ, Niederhuth CE, Ji L, Rohr NA, Griffin PT, Leebens-Mack J, Schmitz RJ. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome Biol. 2017;18(1):65. https://doi.org/10.1186/s13059-017-1195-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bharat SS, Li S, Li J, Yan L, Xia L. Base editing in plants: current status and challenges. Crop J. 2020;8(3):384–95.

    Article  Google Scholar 

  8. Cai R, Lv R, Xe S, Yang G, Jin J. CRISPR/dCas9 tools: epigenetic mechanism and application in gene transcriptional regulation. Int J Mol Sci. 2023;24(19):14865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caso F, Davies B. Base editing and prime editing in laboratory animals. Lab Anim. 2022;56(1):35–49.

    Article  CAS  PubMed  Google Scholar 

  10. Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou B-H, Frommer WB, Lahaye T, Staskawicz BJ. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector–mediated induction of a SWEET sugar transporter in cassava. Mol Plant Microbe Interact. 2014;27(11):1186–98.

    Article  PubMed  Google Scholar 

  11. de Melo BP, Lourenço-Tessutti IT, Paixão JFR, Noriega DD, Silva MCM, de Almeida-Engler J, Fontes EPB, Grossi-de-Sa MF. Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Sci Rep. 2020;10(1):16231.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Devesa-Guerra I, Morales-Ruiz T, Pérez-Roldán J, Parrilla-Doblas JT, Dorado-León M, García-Ortiz MV, Ariza RR, Roldán-Arjona T. DNA methylation editing by CRISPR-guided excision of 5-methylcytosine. J Mol Biol. 2020;432(7):2204–16.

    Article  CAS  PubMed  Google Scholar 

  13. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gaj T, Sirk SJ, Shui S-l, Liu J. Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol. 2016;8(12):a023754.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gallego-Bartolomé J, Gardiner J, Liu W, Papikian A, Ghoshal B, Kuo HY, Zhao JM-C, Segal DJ, Jacobsen SE. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci. 2018;115(9):E2125–34.

    Article  PubMed  PubMed Central  Google Scholar 

  16. García-Murillo L, Valencia-Lozano E, Priego-Ranero NA, Cabrera-Ponce JL, Duarte-Aké FP, Vizuet-de-Rueda JC, Rivera-Toro DM, Herrera-Ubaldo H, de Folter S, Alvarez-Venegas R. CRISPRa-mediated transcriptional activation of the SlPR-1 gene in edited tomato plants. Plant Sci. 2023;329:111617.

    Article  PubMed  Google Scholar 

  17. Gentzel IN, Park CH, Bellizzi M, Xiao G, Gadhave KR, Murphree C, Yang Q, LaMantia J, Redinbaugh MG, Balint-Kurti P. A CRISPR/dCas9 toolkit for functional analysis of maize genes. Plant Methods. 2020;16:1–9.

    Article  Google Scholar 

  18. Ghose AK, Abdullah SNA, Md Hatta MA, Megat Wahab PE. DNA free CRISPR/DCAS9 based transcriptional activation system for UGT76G1 gene in Stevia rebaudiana Bertoni protoplasts. Plants. 2022;11(18):2393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghoshal B, Picard CL, Vong B, Feng S, Jacobsen SE. CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proc Natl Acad Sci. 2021;118(23):e2125016118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghoshal B, Vong B, Picard CL, Feng S, Tam JM, Jacobsen SE. A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana. PLoS Genet. 2020;16(12):e1008983. https://doi.org/10.1371/journal.pgen.1008983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.

    Article  CAS  PubMed  Google Scholar 

  22. He C, Zhang HY, Zhang YX, Fu P, You LL, Xiao WB, Wang ZH, Song HY, Huang YJ, Liao JL. Cytosine methylations in the promoter regions of genes involved in the cellular oxidation equilibrium pathways affect rice heat tolerance. BMC Genomics. 2020;21(1):560. https://doi.org/10.1186/s12864-020-06975-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He L, Huang H, Bradai M, Zhao C, You Y, Ma J, Zhao L, Lozano-Durán R, Zhu J-K. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat Commun. 2022;13(1):1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157(1):95–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hilton IB, D’ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hofacker D, Broche J, Laistner L, Adam S, Bashtrykov P, Jeltsch A. Engineering of effector domains for targeted DNA methylation with reduced off-target effects. Int J Mol Sci. 2020;21(2):502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hooghvorst I, Altpeter F. dCas9–3xSRDX-mediated transcriptional repression in sugarcane. Plant cell Rep. 2023;42(11):1837–40.

    Article  CAS  PubMed  Google Scholar 

  28. Iwase Y, Shiraya T, Takeno K. Flowering and dwarfism induced by DNA demethylation in Pharbitis nil. Physiol Plant. 2010;139(1):118–27.

    Article  CAS  PubMed  Google Scholar 

  29. Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB, Cheng X, Schubert I, Jenuwein T, Jacobsen SE. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma. 2004;112:308–15.

    Article  CAS  PubMed  Google Scholar 

  30. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009;5(6):e1000530.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kawakatsu T, Nery JR, Castanon R, Ecker JR. Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol. 2017;18(1):171. https://doi.org/10.1186/s13059-017-1251-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, Maehr R. Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nat Methods. 2015;12(5):401–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O. Epigenetic diversity increases the productivity and stability of plant populations. Nat Commun. 2013;4(1):2875.

    Article  PubMed  Google Scholar 

  36. Laughery MF, Mayes HC, Pedroza IK, Wyrick JJ. R-loop formation by dCas9 is mutagenic in Saccharomyces cerevisiae. Nucl Acids Res. 2019;47(5):2389–401. https://doi.org/10.1093/nar/gky1278.

    Article  CAS  PubMed  Google Scholar 

  37. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11(3):204–20. https://doi.org/10.1038/nrg2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee JE, Neumann M, Duro DI, Schmid M. CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. PLoS ONE. 2019;14(9):e0222778. https://doi.org/10.1371/journal.pone.0222778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lei Y, Zhang X, Su J, Jeong M, Gundry MC, Huang Y-H, Zhou Y, Li W, Goodell MA. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun. 2017;8(1):16026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li C, Zhang K, Zeng X, Jackson S, Zhou Y, Hong Y. A cis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA. J Virol. 2009;83(8):3540–8. https://doi.org/10.1128/jvi.02346-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li G, Zhang X, Wang H, Liu D, Li Z, Wu Z, Yang H. Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors. Int J Biochem Cell Biol. 2020;125:105790.

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Zhang C, He Y, Li S, Yan L, Li Y, Zhu Z, Xia L. Plant base editing and prime editing: the current status and future perspectives. J Integr Plant Biol. 2023;65(2):444–67.

    Article  PubMed  Google Scholar 

  43. Liu J, Chang C. Concerto on chromatin: interplays of different epigenetic mechanisms in plant development and environmental adaptation. Plants. 2021;10(12):2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu S, Sretenovic S, Fan T, Cheng Y, Li G, Qi A, Tang X, Xu Y, Guo W, Zhong Z. Hypercompact CRISPR–Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants. Plant Commun. 2022;3(6):100453.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R. Editing DNA methylation in the mammalian genome. Cell. 2016;167(1):233-247 e217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mach J. Ticket to ride: tRNA-related sequences and systemic movement of mRNAs. Plant Cell. 2016;28(6):1231–2. https://doi.org/10.1105/tpc.16.00493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malik G, Dangwal M, Kapoor S, Kapoor M. Role of DNA methylation in growth and differentiation in Physcomitrella patens and characterization of cytosine DNA methyltransferases. FEBS J. 2012;279(21):4081–94.

    Article  CAS  PubMed  Google Scholar 

  48. Mao Y, Botella JR, Liu Y, Zhu J-K. Gene editing in plants: progress and challenges. Natl Sci Rev. 2019;6(3):421–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martienssen RA, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science. 2001;293(5532):1070–4.

    Article  CAS  PubMed  Google Scholar 

  50. McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R, Kramer A, Martens A, Edwards JR, Challen GA. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open. 2016;5(6):866–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Molla KA, Qi Y, Karmakar S, Baig MJ. Base Editing landscape extends to perform transversion mutation. Trends Genet TIG. 2020;36(12):899–901. https://doi.org/10.1016/j.tig.2020.09.001.

    Article  CAS  PubMed  Google Scholar 

  52. Molla KA, Shih J, Yang Y. Single-nucleotide editing for zebra3 and wsl5 phenotypes in rice using CRISPR/Cas9-mediated adenine base editors. aBIOTECH. 2020;1(2):106–18. https://doi.org/10.1007/s42994-020-00018-x.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. Nat Plants. 2021;7(9):1166–87. https://doi.org/10.1038/s41477-021-00991-1.

    Article  CAS  PubMed  Google Scholar 

  54. Molla KA, Yang Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol. 2019;37(10):1121–42.

    Article  CAS  PubMed  Google Scholar 

  55. Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K. Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat Biotechnol. 2016;34(10):1060–5.

    Article  CAS  PubMed  Google Scholar 

  56. Murrell A, Rakyan VK, Beck S. From genome to epigenome. Hum Mol Genet. 2005;14(suppl_1):R3–10.

    Article  CAS  PubMed  Google Scholar 

  57. Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD. DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol. 2008;28(2):752–71.

    Article  CAS  PubMed  Google Scholar 

  58. Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun. 2019;10(1):729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pikaard CS, Scheid OM. Epigenetic regulation in plants. Cold Spring Harb Perspect Biol. 2014;6(12):a019315.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Policarpi C, Munafò M, Tsagkris S, Carlini V, Hackett JA. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. bioRxiv. 2022. https://doi.org/10.1101/2022.09.04.506519.

    Article  Google Scholar 

  61. Qu J, Zhu L, Zhou Z, Chen P, Liu S, Locy ML, Thannickal VJ, Zhou Y. Reversing mechanoinductive DSP expression by CRISPR/dCas9–mediated epigenome editing. Am J Respir Crit Care Med. 2018;198(5):599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rajaram N, Kouroukli AG, Bens S, Bashtrykov P, Jeltsch A. Development of super-specific epigenome editing by targeted allele-specific DNA methylation. Epigenetics Chromatin. 2023;16(1):41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ren C, Li H, Liu Y, Li S, Liang Z. Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators. Hortic Res. 2022;9:uhab037.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ren Q, Sretenovic S, Liu G, Zhong Z, Wang J, Huang L, Tang X, Guo Y, Liu L, Wu Y. Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnol J. 2021;19(10):2052–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roca Paixão JF, Gillet F-X, Ribeiro TP, Bournaud C, Lourenço-Tessutti IT, Noriega DD, Melo BPd, de Almeida-Engler J, Grossi-de-Sa MF. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci Rep. 2019;9(1):8080.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Seelan RS, Mukhopadhyay P, Pisano MM, Greene RM. Effects of 5-Aza-2’-deoxycytidine (decitabine) on gene expression. Drug Metab Rev. 2018;50(2):193–207. https://doi.org/10.1080/03602532.2018.1437446.

    Article  CAS  PubMed  Google Scholar 

  67. Smirnikhina SA, Zaynitdinova MI, Sergeeva VA, Lavrov AV. Improving homology-directed repair in genome editing experiments by influencing the cell cycle. Int J Mol Sci. 2022;23(11):5992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sokolova V, Sarkar S, Tan D. Histone variants and chromatin structure, update of advances. Comput Struct Biotechnol J. 2023;21:299–311.

    Article  CAS  PubMed  Google Scholar 

  69. Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, Reik W, Jeltsch A, Jurkowski TP. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucl Acids Res. 2017;45(4):1703–13.

    Article  CAS  PubMed  Google Scholar 

  70. Swain T, Pflueger C, Freytag S, Poppe D, Pflueger J, Nguyen TV, Li JK, Lister R. A modular dCas9-based recruitment platform for combinatorial epigenome editing. Nucl Acids Res. 2024;52(1):474–91.

    Article  PubMed  Google Scholar 

  71. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Turner BM. Defining an epigenetic code. Nat Cell Biol. 2007;9(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  73. Veley KM, Elliott K, Jensen G, Zhong Z, Feng S, Yoder M, Gilbert KB, Berry JC, Lin Z-JD, Ghoshal B. Improving cassava bacterial blight resistance by editing the epigenome. Nat Commun. 2023;14(1):85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vermeulen M, Timmers HM. Grasping trimethylation of histone H3 at lysine 4. Epigenomics. 2010;2(3):395–406.

    Article  CAS  PubMed  Google Scholar 

  75. Victoria D, Aliki K, Venetia K, Georgios M, Zoe H. Spatial and temporal expression of cytosine-5 DNA methyltransferase and DNA demethylase gene families of the Ricinus communis during seed development and drought stress. Plant Growth Regul. 2018;84:81–94.

    Article  CAS  Google Scholar 

  76. Vierra DA, Garzon JL, Rego MA, Adroved MM, Mauro M, Howlett NG. Modulation of the Fanconi anemia pathway via chemically induced changes in chromatin structure. Oncotarget. 2017;8(44):76443.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, Klasić M, Zoldoš V. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucl Acids Res. 2016;44(12):5615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang H, Guo R, Du Z, Bai L, Li L, Cui J, Li W, Hoffman AR, Hu J-F. Epigenetic targeting of granulin in hepatoma cells by synthetic CRISPR dCas9 epi-suppressors. Mol Ther Nucl Acids. 2018;11:23–33.

    Article  CAS  Google Scholar 

  79. Wang K, Dai R, Xia Y, Tian J, Jiao C, Mikhailova T, Zhang C, Chen C, Liu C. Spatiotemporal specificity of correlated DNA methylation and gene expression pairs across different human tissues and stages of brain development. Epigenetics. 2022;17(10):1110–27.

    Article  PubMed  Google Scholar 

  80. Wang X, Li J, Wang Y, Yang B, Wei J, Wu J, Wang R, Huang X, Chen J, Yang L. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat Biotechnol. 2018;36(10):946–9.

    Article  CAS  PubMed  Google Scholar 

  81. Wójcikowska B, Botor M, Morończyk J, Wójcik AM, Nodzyński T, Karcz J, Gaj MD. Trichostatin A triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Front Plant Sci. 2018;9:1353. https://doi.org/10.3389/fpls.2018.01353.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xiong T, Meister GE, Workman RE, Kato NC, Spellberg MJ, Turker F, Timp W, Ostermeier M, Novina CD. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci Rep. 2017;7(1):6732.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yang G, Zhou C, Wang R, Huang S, Wei Y, Yang X, Liu Y, Li J, Lu Z, Ying W. Base-editing-mediated R17H substitution in histone H3 reveals methylation-dependent regulation of Yap signaling and early mouse embryo development. Cell Rep. 2019;26(2):302-312 e304.

    Article  CAS  PubMed  Google Scholar 

  84. Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays. 1995;17(5):423–30. https://doi.org/10.1002/bies.950170510.

    Article  CAS  PubMed  Google Scholar 

  85. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9. https://doi.org/10.1126/science.1186366.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang X, Jacobsen SE. Genetic analyses of DNA methyltransferases in Arabidopsis thaliana. Cold Spring Harb Symp Quant Biol. 2006;71:439–47. https://doi.org/10.1101/sqb.2006.71.047.

    Article  CAS  PubMed  Google Scholar 

  87. Zhao D, Li J, Li S, Xin X, Hu M, Price MA, Rosser SJ, Bi C, Zhang X. Publisher correction: glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2021;39(1):115. https://doi.org/10.1038/s41587-020-0648-3.

    Article  CAS  PubMed  Google Scholar 

  88. Zhou H, Xu L, Li F, Li Y. Transcriptional regulation by CRISPR/dCas9 in common wheat. Gene. 2022;807:145919.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GM is thankful to Indian Council of Agricultural Research (ICAR)-National Agricultural Science Fund (NASF), Govt. of India for the research grant (F. No. NASF/BGAM-9013/2022-23) and Department of Biotechnology, Govt. of India, for the research grant (BT/PR38410/GET/119/310/2020).

Funding

BA, PR, PA are funded by ICAR-NASF as SRF and ATS is currently funded by BITS-Pilani Hyderabad campus as an Institute Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gireesha Mohannath.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent to publish

All authors have read the manuscript and consented to publish

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Kailash C. Bansal; Reviewers: Basudev Ghoshal, Sudhakar Reddy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, A.T., Roy, P., Aravind, B. et al. Epigenome editing strategies for plants: a mini review. Nucleus (2024). https://doi.org/10.1007/s13237-024-00483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13237-024-00483-5

Keywords

Navigation