Skip to main content

Advertisement

Log in

Rapid multiplication of mature Eucalyptus hybrids through macro-and-micropropagation

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Eucalyptus species are globally recognized and extensively planted hardwood trees whose flexibility, growth and diversity make them popular renewable sources of fibre and energy. Across the globe, the interest to create ways to develop significant hardwoods, like eucalypts, is rapidly growing. Although micropropagation offers a means to clonally propagate the desirable cultivars, the technique is often variety-specific for eucalypts. The present study aimed to expand our understanding of root initiation through macro-and-micropropagation in difficult to propagate superior full-sib matured hybrid (7-years-old trees) of eucalypts. Analysis of Variance (ANOVA) revealed that hormonal treatment of IBA (2,000–4,000 ppm) supplemented with Enterobacter sp. (106 cfu ml-1) significantly increased (p < 0.05) hybrid rooting through macropropagation. Notably, root initiation with maximum root development of 10.00% ± 0.91 and 3.75% ± 0.48 was observed at 3,000 ppm of IBA for hybrid genotypes FRI-PH3 (Corymbia torelliana × C. citriodora; 2A) and FRI-PH4 (E. pellita × E. urophylla; 1D), respectively. In the case of micropropagation studies, genotype FRI-4s (coppice shoots of E. tereticornis × E. camaldulensis, 10O) showed significant differences (p < 0.01) with various hormonal combinations (BAP, Kn and TDZ); and maximum number of shoot (4.0 ± 0.82) proliferation with average shoot length of 2.5 ± 0.15 cm was recorded in 0.5 mg L-1 BAP, ½ MS medium and 0.5 mg L-1 Kn in accordance to Duncan Multiple Range Test (DMRT). Afterward, for in vitro rooting, ¼ MS medium fortified with 1.0 mg L-1 IBA was proved to be the optimal medium for root induction, the maximum number of roots per explant (5.0 ± 0.91) with an average root length of 3.10 ± 0.15 cm was observed. Overall, the study signifies successful macro-and-micropropagation of mature eucalyptus hybrids through branch cuttings and nodal segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material (data transparency)

All data files have been uploaded and clearly written in the manuscript.

Code Availability

Not applicable.

References

  1. Assareh MH, Sardabi H. Macropropagation and micropropagation of Ziziphus spina-christi. Pesquisa Agropecuária Brasileira. 2005;40(5):459–65.

    Article  Google Scholar 

  2. Assis TF, Fett-Neto AG, Alfenas AC. Current techniques and prospects for the clonal propagation of hardwood with emphasis on Eucalyptus, in Plantation Forest Biotechnology for the 2004. Walter and M. Carson (Kerala: Research Signpost).

  3. Ballester A, Corredoira E, Viéitez Martín AM. Limitations of somatic embryogenesis in hardwoods trees. 2016.

  4. Bandyopadhyay S, Cane K, Rasmussen G, Hamill JD. Efficient plant regeneration from seedling explants of two commercially important temperate eucalypt species–Eucalyptus nitens and E. globulus. Plant Science. 1999;140(2):189 – 98.

  5. Barton A. The oil mallee project: a multifaceted industrial ecology case study. J Ind Ecol. 1999;3(2-3):161–76.

    Article  CAS  Google Scholar 

  6. Batish DR, Singh HP, Kohli RK, Kaur S. Eucalyptus essential oil as a natural pesticide. For Ecol Manag. 2008;256(12):2166–74.

    Article  Google Scholar 

  7. Bhise KK, Bhagwat PK, Dandge PB. Plant growth-promoting characteristics of salt tolerant Enterobacter cloacae strain KBPD and its efficacy in amelioration of salt stress in Vigna radiata L. J Plant Growth Regul. 2017;36(1):215–26.

    Article  CAS  Google Scholar 

  8. Brondani GE, de Wit Ondas HW, Baccarin FJ, Gonçalves AN, de Almeida M. Micropropagation of Eucalyptus benthamii to form a clonal micro-garden. Vitro Cell Dev Biology-Plant. 2012;48(5):478–87.

    Article  CAS  Google Scholar 

  9. Brondani GE, Dutra LF, Grossi F, Wendling I, Hornig J. Establishment, multiplication and elongation in vitro of Eucalyptus benthamii Maiden & Cambage × Eucalyptus dunnii Maiden. Revista Árvore. 2009;33(1):11–9.

    Article  Google Scholar 

  10. Chang SH, Donald DG, Jacobs G. Micropropagation of Eucalyptus radiata ssp. radiata using explants from mature and coppice material. S Afr For J. 1992;1(1):43–7.

    Google Scholar 

  11. Chang SH, Ho CK, Chen ZZ, Tsay JY. Micropropagation of Taxus mairei from mature trees. Plant Cell Rep. 2001;20(6):496–502.

    Article  CAS  Google Scholar 

  12. de Almeida F, Xavier A, Dias JM. Vegetative propagation of selected Eucalyptus cloeziana F. Muell. trees through cutting technique. Revista Árvore. 2007;31:445–53.

    Article  Google Scholar 

  13. de Oliveira LS, Brondani GE, Batagin-Piotto KD, Calsavara R, Gonçalves AN, de Almeida M. Micropropagation of Eucalyptus cloeziana mature trees. Australian Forestry. 2015;78(4):219–31. DOI:https://doi.org/10.1080/00049158.2015.1073211.

    Article  Google Scholar 

  14. do Prado DZ, Dionizio RC, Vianello F, Baratella D, Costa SM, Lima GP. Quercetin and indole 3-butyric acid (IBA) as rooting inducers in ‘Eucalyptus grandis × E. urophylla’. Aust J Crop Sci. 2015;1(11):1057–63.

    Google Scholar 

  15. Dutra LF, Wendling I, Brondani GE. A micropropagação de eucalipto. Embrapa Florestas-Artigo em periódico indexado (ALICE). 2009.

  16. Ferreira M, Santos PET. Proceedings IUFRO Conference on Silviculture and Improvement of Eucalypts, v.1, Salvador, Colombo (CNPF-EMBRAPA, 14.) 1997.

  17. Gomes F, Canhoto JM. Micropropagation of Eucalyptus nitens Maiden (shining gum). In Vitro Cellular & Developmental Biology-Plant. 2003;39(3):316 – 21.

  18. Goodger JQD, Heskes AM, King DJ, Gleadow RM, Woodrow IE. Research note: micropropagation of Eucalyptus polybractea selected for key essential oil traits. Funct Plant Biol. 2008;35:247–51. doi:https://doi.org/10.1071/FP07241.

    Article  CAS  PubMed  Google Scholar 

  19. Ho CK, Chang SH, Tsai JY. Selection breeding, propagation and cultivation of Taxus mairei in Taiwan. Taiwan For Res Inst. 1998;88:65–82.

    Google Scholar 

  20. Ikemori YK, Penchel RM, Bertolucci FLG. Integrating biotechnology into eucalypt breeding. International Symposium of Wood Biotechnology. Tokyo University of Agriculture and Technology, Tokyo. 1994.

  21. Jetiyanon K. Multiple mechanisms of Enterobacter asburiae strain RS83 for plant growth enhancement. Songklanakarin Journal of Science & Technology. 2015;1:37(1).

  22. Jha CK, Aeron A, Patel BV, Maheshwari DK, Saraf M. Enterobacter: role in plant growth promotion. In: Bacteria in agrobiology: Plant growth responses. Berlin: Springer; 2011. pp. 159–82.

    Chapter  Google Scholar 

  23. Jones NB, Van Staden J. Micropropagation and establishment of Eucalyptus grandis hybrids. South Afr J Bot. 1994;1(2):122–6.

    Article  Google Scholar 

  24. Joshi I, Bisht P, Sharma VK, Uniyal DP. In vitro Clonal Propagation of Mature Eucalyptus F. Silvae Genetica. 2003;52:3–4.

    Google Scholar 

  25. Kendurkar SV, Rangaswamy M. In Vitro Approaches for the Improvement of Eucalyptus. In: Biotechnologies of Crop Improvement. Cham: Springer; 2018. pp. 159–214.

    Chapter  Google Scholar 

  26. Keret R, Nakhooda M, Jones NB, Hills PN. Optimisation of micropropagation protocols for temperate eucalypt hybrids in South Africa, with a focus on auxin transport proteins. South Forests: J For Sci. 2022;20:1–0.

    Google Scholar 

  27. Khalifa AY, Alsyeeh AM, Almalki MA, Saleh FA. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi Journal of Biological Sciences. 2016;23(1):79–86.

  28. Kvaalen H, Daehlen OG, Rognstad AT, Grønstad B, Egertsdotter U. Somatic embryogenesis for plant production of Abies lasiocarpa. Can J For Res. 2005;35(5):1053–60.

    Article  Google Scholar 

  29. Lane DJ. 16S/23S rRNA Sequencing. Chichester: John Wiley and Sons; 1991.

    Google Scholar 

  30. Le Roux JJ, Van Staden J. Micropropagation and tissue culture of Eucalyptus—a review. Tree Physiol. 1991;9(4):435–77.

    Article  PubMed  Google Scholar 

  31. Makouanzi G, Bouvet JM, Denis M, Saya A, Mankessi F, Vigneron P. Assessing the additive and dominance genetic effects of vegetative propagation ability in Eucalyptus—influence of modeling on genetic gain. Tree Genet Genomes. 2014;10(5):1243–56.

    Article  Google Scholar 

  32. Martin B. Eucalyptus: A strategic forest tree. In: Wei RP, Xu D, editors. Eucalyptus Plantations: Research, Management and Development. Proceedings of the International Symposium, Guangzhou, China. 2002. World Scientific Publishing Co. Pte. Ltd., Singapore; pp. 3–18.

  33. Miguel C, Gonçalves S, Tereso S, Marum L, Maroco J, Margarida Oliveira M. Somatic embryogenesis from 20 open-pollinated families of Portuguese plus trees of maritime pine. Planr Cell Tissue Organ Cult. 2004;76(2):121–30.

    Article  CAS  Google Scholar 

  34. Naidu RD, Jones NB. The effect of cutting length on the rooting and growth of subtropical Eucalyptus hybrid clones in South Africa. South Forests. 2009;71(4):297–301.

    Article  Google Scholar 

  35. Nakhooda M, Jain SM. A review of Eucalyptus propagation and conservation. Propag Ornam Plants. 2016;16(4):101–19.

    Google Scholar 

  36. Nakhooda M, Mandiri E. Using synergistic exogenous phytohormones to enhance somatic embryogenesis from leaf explants of a Eucalyptus grandis clone. South Forests: J For Sci. 2016;78(1):73–80.

    Article  Google Scholar 

  37. Nourissier S, Monteuuis O. In vitro rooting of two Eucalyptus urophylla × Eucalyptus grandis mature clones. In Vitro Cellular & Developmental Biology-Plant. 2008;44(4):263–72.

  38. Onay A. Micropropagation of pistachio from mature trees. Planr Cell Tissue Organ Cult. 2000;60(2):159–63.

    Article  Google Scholar 

  39. Panigrahi S, Mohanty S, Rath CC. Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops. South Afr J Bot. 2020;134:17–26.

    Article  CAS  Google Scholar 

  40. Park YS, Pond SE, Bonga JM. Initiation of somatic embryogenesis in white spruce (Picea glauca): genetic control, culture treatment effects, and implications for tree breeding. Theor Appl Genet. 1993;86(4):427–36.

    Article  CAS  PubMed  Google Scholar 

  41. Pinto G, Araújo C, Santos C, Neves L. Plant regeneration by somatic embryogenesis in Eucalyptus spp.: current status and future perspectives. South Forests: J For Sci. 2013;1(2):59–69.

    Article  Google Scholar 

  42. Ranawat B, Bachani P, Singh A, Mishra S. Enterobacter hormaechei as plant growth-promoting bacteria for improvement in Lycopersicum esculentum. Curr Microbiol. 2021;78:1208–17. https://doi.org/10.1007/s00284-021-02368-1.

    Article  CAS  PubMed  Google Scholar 

  43. Saafi H, Borthakur D. In vitro plantlet regeneration from cotyledons of the tree-legume Leucaena leucocephala. Plant Growth Regul. 2002;38(3):279–85.

    Article  CAS  Google Scholar 

  44. Santana Costa Souza DM, Fernandes SB, Oliveira Silva E, Politi Duarte V, Santos Gonçalves D, de Carvalho D, Leal Teixeira G, Ebling Brondani G. Effect of light intensity on in vitro introduction and multiplication of Eucalyptus grandis × Eucalyptus urophylla. In Vitro Cellular & Developmental Biology-Plant. 2021;23:1–5.

  45. Termignoni RR, Wang PJ, Hu CY. Somatic embryo induction in Eucalyptus dunnii. Plant Cell, Tissue and Organ Culture. 1996;45(2):129–32.

  46. Timmis R, El-Nil MM, Stonecypher RW. Potential genetic gain through tissue culture. In: Cell and Tissue Culture in Forestry. Dordrecht: Springer; 1987. pp. 198–215.

    Chapter  Google Scholar 

  47. Trueman SJ, Hung CD, Wendling I. Tissue culture of Corymbia and Eucalyptus. Forests. 2018;9(2):84.

    Article  Google Scholar 

  48. Vibha JB, Shekhawat NS, Mehandru P, Dinesh R. Rapid multiplication of Dalbergia sissoo Roxb.: a timber yielding tree legume through axillary shoot proliferation and ex vitro rooting. Physiol Mol Biology Plants. 2014;20(1):81–7.

    Article  CAS  Google Scholar 

  49. Wallis JT. Recirculating hydroponic systems: evaluating cuttings yield and rooting ability of cold tolerant eucalyptus hybrids (Doctoral dissertation). 2004.

  50. Watt MP, Blakeway F, Cresswell CF, Herman B. Somatic embryogenesis in Eucalyptus grandis. S Afr For J. 1991;157:59–65.

    Google Scholar 

  51. Widowati T, Sukiman H. Production of indole acetic acid by Enterobacter cloacea H3 isolated from Mungbean (Vigna radiata) and its potential supporting the growth of soybean seedling. In IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2019;308. pp. 012040.

  52. Wilson PJ. Propagation characteristics of Eucalyptus globulus Labill. ssp. globulus stem cuttings in relation to their original position in the parent shoot. J Hortic Sci. 1993;68(5):715–24.

    Article  Google Scholar 

  53. Witzel K, Gwinn-Giglio M, Nadendla S, Shefchek K, Ruppel S. Genome sequence of Enterobacter radicincitan. DSM16656T, a plant growth-promoting endophyte. 2012.

  54. Xiao Y, Niu G, Kozai T. Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue and Organ Culture (PCTOC). 2011;105(2):149–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the Indian Council of Forestry Research & Education (ICFRE), Dehradun, under Grant No. 5-1/2017-RCS; dated 23rd June, 2017 is gratefully acknowledged. The authors are thankful to the Director, FRI for providing the research facilities and Ms. Upasana Chaubey for conducting experimentation on micropropagation. Authors wish to thank the Handling Editor and the anonymous reviewer for their constructive and positive comments in the manuscript.

Funding

The financial support by the Indian Council of Forestry Research & Education (ICFRE), Dehradun, under Grant No. 5-1/2017-RCS; dated 23rd June, 2017 is gratefully acknowledged. The authors are thankful to the Director, FRI for providing the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

MSB conceived the research ideas, conducted the analysis, data interpretation, wrote the first draft of the manuscript and led the writing. SM and AS performed the macropropagation-based field experimentation. GSP and AT performed the micropropagation experimentation. SP performed the experimentation on microbes and provided the bacterial culture isolates. All authors edited the draft and critically revised the manuscript.

Corresponding author

Correspondence to Maneesh S. Bhandari.

Ethics declarations

Declaration

None declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor : Maumita Bandyopadhyay; Reviewer : Arpita Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, M.S., Maikhuri, S., Thakur, A. et al. Rapid multiplication of mature Eucalyptus hybrids through macro-and-micropropagation. Nucleus 65, 379–389 (2022). https://doi.org/10.1007/s13237-022-00394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-022-00394-3

Keywords

Navigation