Skip to main content
Log in

Inter-specific hybrid sesame with high lignan content in oil reveals increased expression of sesamin synthase gene

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

The presence of lignans (sesamin, sesamol) adds pharmaceutical value in the sesame oil. Wild sesame, Sesamum mulayanum, though less oil-yielding but contains remarkably higher lignan in oil. We performed an interspecific hybridization between cultivated Indian sesame (S. indicum) and S. mulayanum to bring a better oil profile in the cultivated sesame. The selected recombinant lines of F6 generation showed high oil content with a superior lignan profile and manifested distinct phenotypic selection traits. Sesamin synthase is an essential enzyme in the lignan biosynthetic pathway. We studied the gene behind this enzyme during seed development in the parents through semi-quantitative and qRT-PCR analysis. The recombinant lines with high sesamin content showed increased expression of sesamin synthase gene. This gene is a potential candidate for allele-based molecular marker development in future sesame breeding programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbas G, Hameed A, Rizwan M, et al. Genetic confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) inter-specific recombinants using molecular markers. Front Plant Sci. 2015;6:1107. https://doi.org/10.3389/fpls.2015.01107.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andargie M, Vinas M, Rathgeb A, et al. Lignans of Sesame (Sesamum indicum L.): a comprehensive review. Molecules. 2021;26(4):883. https://doi.org/10.3390/molecules26040883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bedigian D. Evolution of sesame revisited: domestication, diversity and prospects. Genet Resour Crop Evol. 2003;50:779. https://doi.org/10.1023/A:1025029903549.

    Article  CAS  Google Scholar 

  4. Bhattacharjee M, Prakash SH, Roy S, et al. SSR-based DNA fingerprinting of 18 elite Indian varieties of sesame (Sesamum indicum L.). Nucleus. 2020;63:67–73. https://doi.org/10.1007/s13237-019-00290-3.

    Article  Google Scholar 

  5. Biswas AK, Mitra AK. Interspecific hybridization in three species of Sesamum. Indian J Genet Plant Breed. 1990;50:307–9.

    Google Scholar 

  6. Chandra K, Sinha A, Arumugam N. Gene isolation, heterologous expression, purification and functional confirmation of sesamin synthase from Sesamum indicum L. Biotechnology Reports. 2019;22:e00336. https://doi.org/10.1016/j.btre.2019.e00336.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chellamuthu M, Sekar P, Subramanian S. Evaluation of sesame (Sesamum indicum L.) germplasm collection of Tamil Nadu for α-linolenic acid, sesamin and sesamol content. Afr J Biotech. 2017;16:1308–13.

    Article  CAS  Google Scholar 

  8. Chidambaram K, VVRGCM. Characterization of sesame varieties through image analysis. Electron J Plant Breed. 2019;10:785–790. http://ejplantbreeding.org/index.php/EJPB/article/view/3158.

  9. Dar AA, Arumugam N. Lignans of Sesame: purification methods, biological activities and biosynthesis—a review. Bioorgan Chem. 2013. https://doi.org/10.1016/j.bioorg.2013.06.009.

  10. Dell’Aquila A. Application of a computer-aided image analysis system to evaluate seed germination under different environmental conditions. Ital J Agron. 2004;8:51–62.

    Google Scholar 

  11. Dossa K, Diouf D, Wang L, et al. The emerging oilseed crop Sesamum indicum enters the “omics” era. Front Plant Sci. 2017;30(8):1154. https://doi.org/10.3389/fpls.2017.01154.

    Article  Google Scholar 

  12. Du H, Zhang H, Wei L, et al. A high-density genetic map constructed using specific length amplified fragment (SLAF) sequencing and QTL mapping of seed-related traits in sesame (Sesamum indicum L.). BMC Plant Biol. 2019;19(1):588. https://doi.org/10.1186/s12870-019-2172-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dutta D, Harper A, Gangopadhyay G. Data for: transcriptomic dataset of two developmental stages of seeds in cultivated (Sesamum indicum), wild (S. mulayanum) and six inter-specific recombinant lines of sesame. Mendeley Data. 2021;V6. https://doi.org/10.17632/vt3cnmz9bc.6.

  14. Harada E, Murata J, Ono E, et al. (+)-Sesamin-oxidising CYP92B14 shapes specialised lignan metabolism in sesame. Plant J. 2020;104:1117–28. https://doi.org/10.1111/tpj.14989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hata N, Hayashi Y, Okazawa A, et al. Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed Sesamin contents. Plant Sci. 2010;178:510–6. https://doi.org/10.1016/j.plantsci.2010.02.020.

    Article  CAS  Google Scholar 

  16. Horacek M, Hansel-Hohl K, Burg K, et al. Control of origin of sesame oil from various countries by stable isotope analysis and DNA based markers—a pilot study. PLoS ONE. 2015;10(4):e0123020. https://doi.org/10.1371/journal.pone.0123020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jayaraj P, Chandrakala NA, Rajagopalan S, et al. Sesamol: a powerful functional food ingredient from sesame oil for cardio-protection. Food Funct. 2020;11:1198–210. https://doi.org/10.1039/C9FO01873E.

    Article  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  Google Scholar 

  19. Mohammed MI, Hamza ZU. Physicochemical properties of oil extract from Sesamum indicum L. seeds grown in Jigawa State-Nigeria. J Appl Sci Environ Manag. 2008;12:99–101.

    Google Scholar 

  20. Murata J, Ono E, Yoroizuka S, et al. Oxidative rearrangement of (+)-sesamin by CYP92B14 co-generates twin dietary lignans in sesame. Nat Commun. 2017;8:2155. https://doi.org/10.1038/s41467-017-02053-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Namayandeh SM, Kaseb F, Lesan S. Olive and sesame oil - effect on lipid profile in hypercholesterolemic patients, which better? Int J Prev Med. 2013;4:1059–62.

    PubMed  PubMed Central  Google Scholar 

  22. Ono E, Nakai M, Fukui Y, et al. Formation of two methylene di-oxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. PNAS. 2006;103:10116–21. https://doi.org/10.1073/pnas.0603865103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pandey SK, Das A, Rai P, et al. Morphological and genetic diversity assessment of sesame (Sesamum indicum L.) accessions differing in origin. Physiol Mol Biol Plants. 2015;21:519–29. https://doi.org/10.1007/s12298-015-0322-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pathak N, Bhaduri A, Bhat KV, et al. Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species—a domestication footprint. Plant Biol. 2015;17:1039–46. https://doi.org/10.1111/plb.12327.

    Article  CAS  PubMed  Google Scholar 

  25. Prasad MN, Sanjay KR, Prasad DS, et al. Review on nutritional and nutraceutical properties of sesame. J Nutr Food Sci. 2012;2:2.

    Google Scholar 

  26. Prasad R, Gangopadhyay G. Selection of prospective parents among Indian and exotic Sesame (Sesamum indicum L.) for marker-assisted breeding. Indian J Genet. 2014;74:197–204.

    Article  CAS  Google Scholar 

  27. Prasad R, Gangopadhyay G. Phenomic analyses of Indian and exotic accessions of Sesame (Sesamum indicum L.). J Plant Breed Crop Sci. 2011;3:335–51.

    Google Scholar 

  28. Prasad R, Mukherjee KK, Gangopadhyay G. Image-analysis based seed phenomics in sesame. Plant Breed Seed Sci. 2014;68:119–36.

    Google Scholar 

  29. Wan Y, Li H, Fu G, et al. The relationship of antioxidant components and antioxidant activity of sesame seed oil. J Sci Food Agric. 2015;95:2571–8. https://doi.org/10.1002/jsfa.7035.

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Xia Q, Zhang Y, et al. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Gen. 2016;17:31. https://doi.org/10.1186/s12864-015-2316-4.

    Article  CAS  Google Scholar 

  31. Wang L, Yu J, Li D, et al. Sinbase: an integrated database to study genomics, genetics, and comparative genomics in Sesamum indicum. Plant Cell Physiol. 2014;56:e2. https://doi.org/10.1093/pcp/pcu175.

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Zhang Y, Li P, et al. HPLC analysis of seed sesamin and sesamolin variation in a sesame germplasm collection in China. J Am Oil Chem Soc. 2012;89:1011–20. https://doi.org/10.1007/s11746-011-2005-7.

    Article  CAS  Google Scholar 

  33. Wei W, Qi X, Wang L, et al. Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Gen. 2011;12:451.

    Article  CAS  Google Scholar 

  34. Williamson KS, Morris JB, Pye QN, et al. A survey of sesamin and composition of tocopherol variability from seeds of eleven diverse sesame (Sesamum indicum L.) genotypes using HPLC-PAD-ECD. Phytochem Anal. 2008;19:311–22. https://doi.org/10.1002/pca.1050.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to the Director, Bose Institute for providing the infrastructural support. We are thankful to Dr. Mahua Ghosh, Department of Chemical Technology, The University of Calcutta for her valuable suggestions on the oil extraction procedure. The technical assistance of Mr. Jadab Ghosh, Mrs. Kaberi Ghosh, Mr. Mrinal Das, Mr. Swaroop Biswas and Mrs. Sheolee Ghosh Chakraborty is acknowledged. This work was financially supported by intramural grant from Bose Institute to GG, and UCG fellowship to DD.

Author information

Authors and Affiliations

Authors

Contributions

Debabrata Dutta: Formal analysis, investigation (HPLC, qRT-PCR, gel electrophoresis), validation, visualization, writing—original draft, writing—review and editing. Ranjana Prasad: Investigation (hybridization, SSR, seed phonemics). Gaurab Gangopadhyay: Conceptualization, funding acquisition, resources, supervision, writing—original draft, writing—review & editing.

Corresponding author

Correspondence to Gaurab Gangopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Sachin Rustagi; Reviewers: Diaga Diouf, Anuj Kumar

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Supplementary file2 (TIF 14261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, D., Prasad, R. & Gangopadhyay, G. Inter-specific hybrid sesame with high lignan content in oil reveals increased expression of sesamin synthase gene. Nucleus 65, 7–18 (2022). https://doi.org/10.1007/s13237-021-00354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-021-00354-3

Keywords

Navigation