Skip to main content
Log in

Role of arsenic, lead and cadmium on telomere length and the risk of carcinogenesis: a mechanistic insight

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Integrity of telomeres, the protective structures that cap the ends of eukaryotic chromosomes are crucial for the maintenance of chromosomal integrity and cell survival. Loss in telomere length homeostasis is a hallmark of various disease manifestations including cancer. Environmental or occupational exposure to heavy metal contaminants is known to disrupt this homeostasis. This study aims to substantiate the effects of heavy metal toxicity, particularly three heavy metal toxicants: arsenic, lead and cadmium on telomere length and to comprehend the mechanistic insights in depth. The mechanisms involved in telomere length alterations in response to heavy metal toxicity are still not clearly understood. Recent studies indicate epigenetic de-regulations in response to heavy metal toxicity and interestingly, telomere length is also regulated by epigenetic modifications. Environmental exposure induced epigenetic alterations might be one of the mechanism involved in telomere dysfunction. Telomeres are a prognostic marker in carcinogenesis, and hence further in-depth studies are indeed important in this field for future therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ameer SS, Xu Y, Engström K, Li H, Tallving P, Nermell B, Boemo A, Parada LA, Peñaloza LG, Concha G, Harari F. Exposure to inorganic arsenic is associated with increased mitochondrial DNA copy number and longer telomere length in peripheral blood. Front Cell Dev Biol. 2016;4:87.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aviv A, Anderson JJ, Shay JW. Mutations, cancer and the telomere length paradox. Trends Cancer. 2017;3(4):253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benetti R, García-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 2007;39(2):243.

    Article  CAS  PubMed  Google Scholar 

  4. Bhattacharjee P, Banerjee M, Giri AK. Role of genomic instability in arsenic-induced carcinogenicity: a review. Environ Int. 2013;53:29–40.

    Article  CAS  PubMed  Google Scholar 

  5. Bhattacharjee P, Paul S. Risk of occupational exposure to asbestos, silicon and arsenic on pulmonary disorders: understanding the genetic-epigenetic interplay and future prospects. Environ Res. 2016;147:425–34.

    Article  CAS  PubMed  Google Scholar 

  6. Bhattacharjee P, Sanyal T, Bhattacharjee S. Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India. Environ Res. 2018;163:289–96.

    Article  CAS  PubMed  Google Scholar 

  7. Bibo L. Reviews on selected topics of telomere biology. IntechOpen: Rijeka; 2012. ISBN 978-953-51-0849-8.

    Google Scholar 

  8. Bjørklund G, Aaseth J, Chirumbolo S, Urbina MA, Uddin R. Effects of arsenic toxicity beyond epigenetic modifications. Environ Geochem Health. 2018;40(3):955–65.

    Article  CAS  PubMed  Google Scholar 

  9. Blackburn EH, Collins K. Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol. 2011;3(5):a003558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6(8):611.

    Article  CAS  PubMed  Google Scholar 

  11. Borghini A, Faita F, Mercuri A, Minichilli F, Bustaffa E, Bianchi F, Andreassi MG. Arsenic exposure, genetic susceptibility and leukocyte telomere length in an Italian young adult population. Mutagenesis. 2016;31(5):539–46.

    Article  CAS  PubMed  Google Scholar 

  12. Chatterjee D, Adak S, Banerjee N, Bhattacharjee P, Bandyopadhyay AK, Giri AK. Evaluatıon of health effects, genetıc damage and telomere length ın children exposed to arsenic in West Bengal, İndia. Mutat Res Genet Toxicol Environ Mutagen. 2018;836:82–8.

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee D, Bhattacharjee P, Sau TJ, Das JK, Sarma N, Bandyopadhyay AK, Roy SS, Giri AK. Arsenic exposure through drinking water leads to senescence and alteration of telomere length in humans: a case-control study in West Bengal, India. Mol Carcinog. 2015;54(9):800–9.

    Article  CAS  PubMed  Google Scholar 

  14. Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM, Liu MM. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood. 1997;89(9):3345–53.

    CAS  PubMed  Google Scholar 

  15. Chou WC, Hawkins AL, Barrett JF, Griffin CA, Dang CV. Arsenic inhibition of telomerase transcription leads to genetic instability. J Clin Investig. 2001;108(10):1541–7.

    Article  CAS  PubMed  Google Scholar 

  16. Dai W, Chen H, Yu R, He L, Chen B, Chen X. Effects of cadmium on telomerase activity, expressions of TERT, c-myc and P53, and apoptosis of rat hepatocytes. J Huazhong Univ Sci Technol [Med Sci]. 2010;30(6):709–13.

    Article  CAS  Google Scholar 

  17. De Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19(18):2100–10.

    Article  CAS  PubMed  Google Scholar 

  18. Demanelis K, Virani S, Colacino JA, Basu N, Nishijo M, Ruangyuttikarn W, Swaddiwudhipong W, Nambunmee K, Rozek LS. Cadmium exposure and age-associated DNA methylation changes in non-smoking women from northern Thailand. Environ Epigenetics. 2017;3(2):1–10.

    Article  CAS  Google Scholar 

  19. Devóz PP, Gomes WR, De Araújo ML, Ribeiro DL, Pedron T, Greggi Antunes LM, Batista BL, Barbosa F Jr, Barcelos GR. Lead (Pb) exposure induces disturbances in epigenetic status in workers exposed to this metal. J Toxicol Environ Health Part A. 2017;80(19–21):1098–105.

    Article  CAS  PubMed  Google Scholar 

  20. Diotti R, Loayza D. Shelterin complex and associated factors at human telomeres. Nucleus. 2011;2(2):119–35.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vera E, Canela A, Fraga MF, Esteller M, Blasco MA. Epigenetic regulation of telomeres in human cancer. Oncogene. 2008;27:6817–33.

    Article  CAS  PubMed  Google Scholar 

  22. Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis. Rev Environ Health. 2017;32(1–2):93–103.

    Article  CAS  PubMed  Google Scholar 

  23. Eid A, Zawia N. Consequences of lead exposure, and it’s emerging role as an epigenetic modifier in the aging brain. Neurotoxicology. 2016;56:254–61.

    Article  CAS  PubMed  Google Scholar 

  24. Farnung BO, Brun CM, Arora R, Lorenzi LE, Azzalin CM. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS ONE. 2012;7(4):e35714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferrario D, Collotta A, Carfi M, Bowe G, Vahter M, Hartung T, Gribaldo L. Arsenic induces telomerase expression and maintains telomere length in human cord blood cells. Toxicology. 2009;260:132–41.

    Article  CAS  PubMed  Google Scholar 

  26. Fillman T, Shimizu-Furusawa H, Ng CF, Parajuli RP, Watanabe C. Association of cadmium and arsenic exposure with salivary telomere length in adolescents in Terai, Nepal. Environ Res. 2016;149:8–14.

    Article  CAS  PubMed  Google Scholar 

  27. Gao J, Roy S, Tong L, Argos M, Jasmine F, Rahaman R, Rakibuz-Zaman M, Parvez F, Ahmed A, Hore SK, Sarwar G. Arsenic exposure, telomere length, and expression of telomere-related genes among Bangladeshi individuals. Environ Res. 2015;136:462–9.

    Article  CAS  PubMed  Google Scholar 

  28. García-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet. 2004;36(1):94.

    Article  CAS  PubMed  Google Scholar 

  29. García-Lestón J, Méndez J, Pásaro E, Laffon B. Genotoxic effects of lead: an updated review. Environ Int. 2010;36(6):623–36.

    Article  CAS  PubMed  Google Scholar 

  30. Gastaldo J, Viau M, Bencokova Z, Joubert A, Charvet AM, Balosso J, Foray N. Lead contamination results in late and slowly repairable DNA double-strand breaks and impacts upon the ATM-dependent signaling pathways. Toxicol Lett. 2007;173(3):201–14.

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalo S, García-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguía R, Dean DC, Esteller M, Jenuwein T, Blasco MA. Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol. 2005;7(4):420.

    Article  CAS  PubMed  Google Scholar 

  32. Grau-Perez M, Zhao J, Pierce B, Francesconi KA, Goessler W, Zhu Y, An Q, Umans J, Best L, Cole SA, Navas-Acien A. Urinary metals and leukocyte telomere length in American Indian communities: The Strong Heart and the Strong Heart Family Study. Environ Pollut. 2019;246:311–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hartwig A. Cadmium and cancer. In Sigel A, Sigel H, Sigel RKO, editors. Cadmium: from toxicity to essentiality. Dordrecht: Springer; 2013. p. 491–507.

    Chapter  Google Scholar 

  34. Hartwig A. Mechanisms in cadmium-induced carcinogenicity: recent insights. Biometals. 2010;23(5):951–60.

    Article  CAS  PubMed  Google Scholar 

  35. Hathcock KS, Jeffrey Chiang Y, Hodes RJ. In vivo regulation of telomerase activity and telomere length. Immunol Rev. 2005;205(1):104–13.

    Article  CAS  PubMed  Google Scholar 

  36. Hoffman E, Mielicki WP. Arsenic trioxide: impact on the growth and differentiation of cancer cells and possible use in cancer therapy. Postepy Hig Med Dosw (Online). 2013;67:817–27.

    Article  Google Scholar 

  37. Hoxha M, Dioni L, Bonzini M, Pesatori AC, Fustinoni S, Cavallo D, Carugno M, Albetti B, Marinelli B, Schwartz J, Bertazzi PA. Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ Health. 2009;8(1):41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang J, Okuka M, Lu W, Tsibris JC, McLean MP, Keefe DL, Liu L. Telomere shortening and DNA damage of embryonic stem cells induced by cigarette smoke. Reprod Toxicol. 2013;35:89–95.

    Article  CAS  PubMed  Google Scholar 

  39. Jimenez Villarreal J, Murillo Ortiz B, Martinez Garza S, Rivas Armendáriz DI, Boone Villa VD, Carranza Rosales P, Betancourt Martínez ND, Delgado Aguirre H, Morán Martínez J. Telomere length analysis in residents of a community exposed to arsenic. J Biochem Mol Toxicol. 2019;33(1):e22230.

    Article  CAS  Google Scholar 

  40. Joseph P. Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol. 2009;238(3):272–9.

    Article  CAS  PubMed  Google Scholar 

  41. Khan F, Momtaz S, Niaz K, Hassan FI, Abdollahi M. Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem Toxicol. 2017;107:406–17.

    Article  CAS  PubMed  Google Scholar 

  42. Ko JL, Cheng YJ, Liu GC, Hsin IL, Chen HL. The association of occupational metals exposure and oxidative damage, telomere shortening in fitness equipments manufacturing workers. Ind Health. 2017;55:345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koyama H, Kitoh H, Satoh M, Tohyama C. Low dose exposure to cadmium and its health effects. Jpn J Hyg. 2002;57(3):547–55.

    Article  CAS  Google Scholar 

  44. Li H, Engström K, Vahter M, Broberg K. Arsenic exposure through drinking water is associated with longer telomeres in peripheral blood. Chem Res Toxicol. 2012;25(11):2333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin L, Trimarchi JR, Navarro P, Blasco MA, Keefe DL. Oxidative stress contributes to arsenic-induced telomere attrition, chromosome instability, and apoptosis. J Biol Chem. 2003;278(34):31998–2004.

    Article  CAS  Google Scholar 

  46. Lin S, Huo X, Zhang Q, Fan X, Du L, Xu X, Qiu S, Zhang Y, Wang Y, Gu J. Short placental telomere was associated with cadmium pollution in an electronic waste recycling town in China. PLoS ONE. 2013;8(4):e60815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu Q, Wang H, Hu D, Ding C, Xu H, Tao D. Effects of trace elements on the telomere lengths of hepatocytes L-02 and hepatoma cells SMMC-7721. Biol Trace Elem Res. 2004;100(3):215–27.

    Article  CAS  PubMed  Google Scholar 

  48. Lopes AC, Peixe TS, Mesas AE, Paoliello MM. Lead exposure and oxidative stress: a systematic review. In: Reviews of environmental contamination and toxicology, vol 236. Cham: Springer; 2016. p. 193–238.

  49. Mannan T, Ahmed S, Akhtar E, Ahsan KB, Haq A, Kippler M, Vahter M, Raqib R. Associations of arsenic exposure with telomere length and naïve T cells in childhood: a birth cohort study. Toxicol Sci. 2018;164:539–49.

    Article  CAS  PubMed  Google Scholar 

  50. Meakin CJ, Martin EM, Fry RC. Epigenetic mechanisms underlying arsenic-induced toxicity. Curr Opin Toxicol. 2017;6:1–9.

    Article  Google Scholar 

  51. Mizuno Y, Konishi S, Imai H, Fujimori E, Kojima N, Yoshinaga J. Cadmium exposure and blood telomere length in female university students in Japan. Biol Trace Elem Res. 2019;5:1–8.

    Google Scholar 

  52. Mo J, Xia Y, Ning Z, Wade TJ, Mumford JL. Elevated human telomerase reverse transcriptase gene expression in blood cells associated with chronic arsenic exposure in Inner Mongolia, China. Environ Health Perspect. 2009;117:354–60.

    Article  CAS  PubMed  Google Scholar 

  53. Møller P, Wils RS, Jensen DM, Andersen MH, Roursgaard M. Telomere dynamics and cellular senescence: an emerging field in environmental and occupational toxicology. Crit Rev Toxicol. 2018;48(9):761–88.

    Article  CAS  PubMed  Google Scholar 

  54. Nomura SJ, Robien K, Zota AR. Serum folate, vitamin B-12, vitamin A, γ-tocopherol, α-tocopherol, and carotenoids do not modify associations between cadmium exposure and leukocyte telomere length in the general US adult population-3. J Nutr. 2017;147(4):538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oh BK, Um TH, Choi GH, Park YN. Frequent changes in subtelomeric DNA methylation patterns and its relevance to telomere regulation during human hepatocarcinogenesis. Int J Cancer. 2011;128(4):857–68.

    Article  CAS  PubMed  Google Scholar 

  56. Paul S, Giri AK. Epimutagenesis: a prospective mechanism to remediate arsenic-induced toxicity. Environ Int. 2015;81:8–17.

    Article  CAS  PubMed  Google Scholar 

  57. Pawlas N, Płachetka A, Kozłowska A, Broberg K, Kasperczyk S. Telomere length in children environmentally exposed to low-to-moderate levels of lead. Toxicol Appl Pharmacol. 2015;287(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  58. Pawlas N, Płachetka A, Kozłowska A, Mikołajczyk A, Kasperczyk A, Dobrakowski M, Kasperczyk S. Telomere length, telomerase expression, and oxidative stress in lead smelters. Toxicol Ind Health. 2016;32(12):1961–70.

    Article  CAS  PubMed  Google Scholar 

  59. Pershagen G. The carcinogenicity of arsenic. Environ Health Perspect. 1981;40:93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pottier G, Viau M, Ricoul M, Shim G, Bellamy M, Cuceu C, Hempel WM, Sabatier L. Lead exposure induces telomere instability in human cells. PLoS ONE. 2013;8(6):e67501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rahama SM, Khider HE, Mohamed SN, Abuelmaali SA, Elaagip AH. Environmental pollution of lead in traffic air and blood of traffic policemen in Khartoum State, Sudan. East Afr J Public Health. 2011;8(2):148–51.

    Google Scholar 

  62. Restrepo HG, Sicard D, Torres MM. DNA damage and repair in cells of lead exposed people. Am J Ind Med. 2000;38(3):330–4.

    Article  CAS  PubMed  Google Scholar 

  63. Roy A, Kordas K. The relation between low-level lead exposure and oxidative stress: a review of the epidemiological evidence in children and non-occupationally exposed adults. Curr Environ Health Rep. 2016;3(4):478–92.

    Article  CAS  PubMed  Google Scholar 

  64. Sanders A, Smeester L, Rojas D, DeBussycher T, Wu M, Wright F, Zhou YH, Laine J, Rager J, Swamy G, Ashley-Koch A. Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics. 2014;9(2):212–21.

    Article  CAS  PubMed  Google Scholar 

  65. Sanyal T, Bhattacharjee P, Bhattacharjee S. Hypomethylation of mitochondrial D-loop and ND6 with increased mitochondrial DNA copy number in the arsenic-exposed population. Toxicology. 2018;408:54–61.

    Article  CAS  PubMed  Google Scholar 

  66. Schoeftner S, Blasco MA. A ‘higher order’of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J. 2009;28(16):2323–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011;14(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Srinivas N, Rachakonda S, Hielscher T, Calderazzo S, Rudnai P, Gurzau E, Koppova K, Fletcher T, Kumar R. Telomere length, arsenic exposure and risk of basal cell carcinoma of skin. bioRxiv. 2018;465732.

  69. Steenland K, Boffetta P. Lead and cancer in humans: where are we now? Am J Ind Med. 2000;38(3):295–9.

    Article  CAS  Google Scholar 

  70. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol. 2003;13(17):1549–56.

    Article  CAS  PubMed  Google Scholar 

  71. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 2003;286(2):355–65.

    Article  CAS  PubMed  Google Scholar 

  72. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. InMolecular, clinical and environmental toxicology. Basel: Springer; 2012. p. 133–164.

  73. Von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.

    Article  Google Scholar 

  74. Wai KM, Umezaki M, Kosaka S, Mar O, Umemura M, Fillman T, Watanabe C. Impact of prenatal heavy metal exposure on newborn leucocyte telomere length: a birth-cohort study. Environ Pollut. 2018;243:1414–21.

    Article  CAS  PubMed  Google Scholar 

  75. Wang B, Li Y, Shao C, Tan Y, Cai L. Cadmium and its epigenetic effects. Curr Med Chem. 2012;19(16):2611–20.

    Article  CAS  PubMed  Google Scholar 

  76. Wang C, Zhao L, Lu S. Role of TERRA in the regulation of telomere length. Int J Biol Sci. 2015;11(3):316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. White LD, Cory-Slechta DA, Gilbert ME, Tiffany-Castiglioni E, Zawia NH, et al. New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol. 2007;225:1–27.

    Article  CAS  PubMed  Google Scholar 

  78. WHO, 2018. https://www.who.int/news-room/fact-sheets/detail/arsenic.

  79. WHO, 2010. https://www.who.int/ipcs/assessment/public_health/lead/en/.

  80. WHO, 2010. https://www.who.int/ipcs/assessment/public_health/cadmium/en/.

  81. Wu Y, Liu Y, Ni N, Bao B, Zhang C, Lu L. High lead exposure is associated with telomere length shortening in Chinese battery manufacturing plant workers. Occup Environ Med. 2012;69(8):557–63.

    Article  CAS  PubMed  Google Scholar 

  82. Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol. 2008;9(9):232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang C, Kibriya MG, Jasmine F, Roy S, Gao J, Sabarinathan M, Shinkle J, Delgado D, Ahmed A, Islam T, Eunus M. A study of telomere length, arsenic exposure, and arsenic toxicity in a Bangladeshi cohort. Environ Res. 2018;164:346–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang L, Song L, Liu B, Wu M, Wang L, Zhang B, Xiong C, Xia W, Li Y, Cao Z, Wang Y. Prenatal cadmium exposure is associated with shorter leukocyte telomere length in Chinese newborns. BMC Med. 2019;17(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang X, Lin S, Funk WE, Hou L. Republished: environmental and occupational exposure to chemicals and telomere length in human studies. Postgrad Med J. 2013;89(1058):722–8.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang TC, Schmitt MT, Mumford JL. Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro. Carcinogenesis. 2003;24:1811–7.

    Article  CAS  PubMed  Google Scholar 

  87. Zheng GQ, Zhang GH, Wu HT, Tu YT, Tian W, Fang Y, Lu Y, Gong SY, Zhang YN, Yu LB, Zhang H. Relative telomere length and gene expression of shelterin complex proteins among vinyl chloride monomer-exposed workers in China. Environ Mol Mutagen. 2019;60(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  88. Zota AR, Needham BL, Blackburn EH, Lin J, Park SK, Rehkopf DH, Epel ES. Associations of cadmium and lead exposure with leukocyte telomere length: findings from National Health and Nutrition Examination Survey, 1999–2002. Am J Epidemiol. 2014;181(2):127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. Biochemistry (Moscow). 2010;75(13):1563–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University of Calcutta (Project Code BI: 166/21, support to PB, senior author), and University Grants Commission (for providing Senior Research Fellowship to PB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritha Bhattacharjee Sr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is based on the presentation made during 18th All India Congress of Cytology and Genetics and International Symposium on “Translating Genes and Genomes” held at CSIR-Indian Institute of Chemical Biology, Kolkata in collaboration with Archana Sharma Foundation of Calcutta during January 29–31, 2018.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Bhattacharjee, P. & Bhattacharjee, P. Role of arsenic, lead and cadmium on telomere length and the risk of carcinogenesis: a mechanistic insight. Nucleus 62, 99–107 (2019). https://doi.org/10.1007/s13237-019-00280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-019-00280-5

Keywords

Navigation