Skip to main content
Log in

Cooperative and Noncooperative Extraction in a Common Pool with Habit Formation

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

The present paper considers the exploitation of a common-property, nonrenewable resource, by individuals subject to habit formation. We formalize their behavior by means of a utility function, depending on the difference between the individuals’ current consumption and the consumption level which they aspire, the latter being a weighted average of past consumptions in the population. We derive and compare the benchmark cooperative solution and a noncooperative Markov-perfect Nash equilibrium of the differential game. We investigate how the intensity, persistence and initial level of habits shape the cooperative and noncooperative solutions. We prove that habit formation may either mitigate or worsen the tragedy of the commons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In fact, the model based on latter assumption can be seen as limit cases of our model, when the persistence of habits tends to zero.

  2. Rouillon [27] proposes a general formulation, which embeds both assumptions.

  3. Alternatively, the parameter \(\alpha \) also gives the marginal rate of substitution between consumption and aspiration.

  4. In particular, \(u\left( q\right) =\ln q\) and \(u\left( q\right) =\left( q^{1-\mu }-1\right) /\left( 1-\mu \right) \).

  5. Constantinides [10] and Pollak [24] explicitly use the same condition. This condition is implicit in Ljungqvist and Uhlig [18], and Long and McWhinnie [21]. Campbell and Cochrane [7] avoid the problem by means of a formalization of habits preventing the aspiration level to become larger than the rate of consumption.

  6. Here, \(q_{i}\left( t\right) =\left( c_{i}\left( t\right) -\alpha y\left( t\right) \right) /\left( 1-\alpha \right) \).

  7. Corollary 1 will be satisfied for example if \(u(q)=(q^{1-\mu }-1)/(1-\mu )\), with \(\mu >0\).

  8. Remember that \(z=x-\frac{\alpha }{1-\alpha }\frac{y}{\beta }\).

  9. Here and below, in saying that \(q^{\circ }\) is decreasing in \(\sigma \left( \cdot \right) \), we mean that when comparing two problems only differing with respect to their elasticity of marginal utility, \(\sigma _{1}\left( \cdot \right) \) and \(\sigma _{2}\left( \cdot \right) \) (say), the optimal consumption \(q^{\circ }\) will be smaller in the second problem when \(\sigma _{1}\left( q\right) <\sigma _{2}\left( q\right) \), for all q.

  10. Again, here, \(\sigma _{1}\left( \cdot \right) \) is said smaller than \(\sigma _{2}\left( \cdot \right) \) if \(\sigma _{1}\left( q\right) <\sigma _{2}\left( q\right) \), for all q.

  11. Recall that \(q^{\circ }<\underline{c}^{\circ }\). If \(y\le \underline{c}^{\circ }\), as \(c^{\circ }=\left( 1-\alpha \right) q^{\circ }+\alpha y\), we have \(c^{\circ }\le \underline{c}^{\circ }\); otherwise, if \(y>\underline{c}^{\circ }\), we get \(c^{\circ }\gtreqless \underline{c}^{\circ }\) if and only if \(\alpha \gtreqless \left( \underline{c}^{\circ }-q^{\circ }\right) /\left( y-q^{\circ }\right) \) .

  12. Here, \(q_{i}\left( t\right) =\left( c_{i}\left( t\right) -\alpha y\left( t\right) \right) /\left( 1-\alpha \right) \).

  13. As \(\left( n-1\right) /n<1\), for all n, examples of standard utility functions satisfying this condition are \(u\left( c\right) =\ln \left( c\right) \) and \(\left( c^{1-\mu }-1\right) /\left( 1-\mu \right) \), with \(\mu >1\).

  14. Remember that \(z=x-\frac{\alpha }{1-\alpha }\frac{y}{\beta }\).

  15. Again, \(\sigma _{1}\left( \cdot \right) \) is said smaller than \(\sigma _{2}\left( \cdot \right) \) if \(\sigma _{1}\left( q\right) <\sigma _{2}\left( q\right) \), for all q.

  16. Again, \(\sigma _{1}\left( \cdot \right) \) is said smaller than \(\sigma _{2}\left( \cdot \right) \) if \(\sigma _{1}\left( q\right) <\sigma _{2}\left( q\right) \), for all q.

  17. We dedicate Sect. 5 to deepen this important question.

  18. Remember that \(c^{*}\) and \(q^{*}\) vary parallely.

  19. Recall that \(q^{*}<\underline{c}^{*}\). If \(y_{0}\le \underline{c}^{*}\), as \(c^{*}=\left( 1-\alpha \right) q^{*}+\alpha y_{0}\), we have \(c^{*}\le \underline{c}^{*}\); otherwise, if \(y_{0}>\underline{c}^{*}\), we get \(c^{*}\gtreqless \underline{c}^{*}\) if and only if\(\alpha \gtreqless \left( \underline{c}^{*}-q^{*}\right) /\left( y_{0}-q^{*}\right) \) .

  20. When \(q\left( t\right) =f\left( z\left( t\right) \right) \), \(\mu \left( t\right) =-\frac{\alpha }{\left( 1-\alpha \right) \beta }u^{\prime }\left( f\left( z\left( t\right) \right) \right) \) and \(\eta \left( t\right) =0\), (8) simplifies to \(\dot{\mu }\left( t\right) =\delta \mu \left( t\right) \).

  21. When \(q\left( t\right) =0\), \(\mu \left( t\right) =-\frac{\alpha }{\left( 1-\alpha \right) \beta }\mathrm{e}^{\delta \left( t-T\right) }u^{\prime }\left( 0\right) \) and \(\eta \left( t\right) =\left( \mathrm{e}^{\delta \left( t-T\right) }-1\right) u^{\prime }\left( 0\right) \), (8) simplifies to \(\dot{\mu }\left( t\right) =\delta \mu \left( t\right) \) .

  22. Here, we use \(\partial s_{j}^{*}\left( x,y\right) /\partial x=\left( 1-\alpha \right) g'\left( x-\frac{\alpha }{\left( 1-\alpha \right) \beta }y\right) \) and \(\partial s_{j}^{*}\left( x,y\right) /\partial y=\frac{\alpha }{\beta }\big (\beta -g'\big (x-\frac{\alpha }{(1-\alpha )\beta }y\big )\big )\).

  23. When \(q_{i}\left( t\right) =g\left( z\left( t\right) \right) \), \(\lambda _{i}\left( t\right) =u'\left( g\left( z\left( t\right) \right) \right) \), \(\mu _{i}\left( t\right) =-\frac{\alpha }{\left( 1\,-\,\alpha \right) \beta }u'\left( g\left( z\left( t\right) \right) \right) \) and \(\eta _{i}\left( t\right) =0\), (14) and (15) simplify to \(\dot{\lambda }_{i}\left( t\right) =\left( \delta +\left( n-1\right) g'\left( z\left( t\right) \right) \right) \lambda _{i}\left( t\right) \) and \(\dot{\mu }_{i}\left( t\right) =\left( \delta +\left( n-1\right) g'\left( z\left( t\right) \right) \right) \mu _{i}\left( t\right) \).

  24. When \(q_{i}\left( t\right) =0\), \(\lambda _{i}\left( t\right) =\mathrm{e}^{\rho \left( t-T\right) }u^{\prime }\left( 0\right) \), \(\mu _{i}\left( t\right) =-\frac{\alpha }{\left( 1\,-\,\alpha \right) \beta }\mathrm{e}^{\rho \left( t-T\right) }u^{\prime }\left( 0\right) \) and \(\eta _{i}\left( t\right) =\left( \mathrm{e}^{\rho \left( t-T\right) }-1\right) u^{\prime }\left( 0\right) \), (14) and (15) simplify to \(\dot{\lambda }_{i}\left( t\right) =\left( \delta +\left( n-1\right) g'\left( z\left( t\right) \right) \right) \lambda _{i}\left( t\right) \) and \(\dot{\mu }_{i}\left( t\right) =\left( \delta +\left( n-1\right) g'\left( z\left( t\right) \right) \right) \mu _{i}\left( t\right) \).

References

  1. Alessie R, Lusardi A (1997) Consumption, saving and habit formation. Econ Lett 55:103–108

    Article  MATH  Google Scholar 

  2. Alonso-Carrera J, Caballé J, Raurich X (2005) Growth, habit formation, and catching-up with the Joneses. Eur Econ Rev 49:1665–1691

    Article  Google Scholar 

  3. Arrow KJ, Dasgupta PS (2009) Conspicuous consumption, inconspicuous leisure. Econ J 119(541):497–516

    Article  Google Scholar 

  4. Becker GS (1974) A theory of social interactions. J Polit Econ 82(6):1063–1093

    Article  Google Scholar 

  5. Becker GS (1992) Habits, addictions, and traditions. Kyklos 45(3):327–345

    Article  Google Scholar 

  6. Becker GS, Murphy KM (1988) A theory of rational addiction. J Polit Econ 96(4):675–700

    Article  Google Scholar 

  7. Campbell JY, Cochrane JH (1999) By force of habit: a consumption-based explanation of aggregate stock market behavior. J Polit Econ 107(2):205–251

    Article  Google Scholar 

  8. Carroll C et al (1997) Comparison utility in a growth model. J Econ Growth 2:339–367

    Article  MATH  Google Scholar 

  9. Carroll CD (2000) Solving consumption models with multiplicative habits. Econ Lett 68:67–77

    Article  MATH  Google Scholar 

  10. Constantinides GM (1990) Habit formation: a resolution of the equity premium puzzle. J Polit Econ 98(3):519–543

    Article  Google Scholar 

  11. Dockner EJ, Sorger G (1996) Existence and properties of equilibria for a dynamic game on productive assets. J Econ Theory 71(1):209–227

    Article  MathSciNet  MATH  Google Scholar 

  12. Dockner E et al (2000) Differential games in economics and management science. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  13. Duesenberry JS (1949) Income, saving, and the theory of consumer behavior. Harvard University Press, Cambridge, MA

  14. Easterlin R (2001) Income and happiness: toward a unified theory. Econ J 111:465–484

    Article  Google Scholar 

  15. Josa-Fombellida R, Rinćon-Zapatero JP (2015) Euler–Lagrange equations of stochastic differential games: application to a game of a productive asset. Econ Theory 29:61–108

    Article  MathSciNet  MATH  Google Scholar 

  16. Katayama S, Long NV (2010) A dynamic game of status-seeking with public capital and an exhaustible resource. Optim Control Appl Methods 31:43–53

    MathSciNet  MATH  Google Scholar 

  17. Liebenstein H (1950) Bandwagon, snob, and Veblen effects in the theory of consumers’ demand. Q J Econ 64(2):183–207

    Article  Google Scholar 

  18. Ljungqvist L, Uhlig H (2000) Tax policy and aggregate demand management under catching up with the Joneses. Am Econ Rev 90(3):356–366

    Article  Google Scholar 

  19. Long NV (2011) Dynamic games in the economics of natural resources: a survey. Dyn Games Appl 1:115–148

    Article  MathSciNet  MATH  Google Scholar 

  20. Long NV (2010) Dynamic games in economics: a survey. World Scientific, Singapore

    Book  MATH  Google Scholar 

  21. Long NV, McWhinnie S (2012) The tragedy of the commons in a fishery when relative performance matters. Ecol Econ 81:140–154

    Article  Google Scholar 

  22. Mitra T, Sorger G (2015) Noncooperative resource exploitation by patient players. Dyn Games Appl 5:361–377

    Article  MathSciNet  MATH  Google Scholar 

  23. Naryshkin R, Davison M (2009) Developing utility functions for optimal consumption in models with habit formation and catching up with the Joneses. Can Appl Math Q 17(4):703–719

    MathSciNet  MATH  Google Scholar 

  24. Pollak RA (1970) Habit formation and dynamic demand functions. J Polit Econ 78(4):745–763

    Article  Google Scholar 

  25. Rinćon-Zapatero JP, Martinez J, Martin-Herran G (1998) New method to characterize subgame perfect Nash equilibria in differential games. J Optim Theory Appl 96(2):377–395

    Article  MathSciNet  MATH  Google Scholar 

  26. Rinćon-Zapatero JP (2004) Characterization of Markovian equilibria in a class of differential games. J Econ Dyn Control 28:1243–1266

    Article  MathSciNet  MATH  Google Scholar 

  27. Rouillon S (2014) Do social status seeking behaviors worsen the tragedy of the commons? Dyn Games Appl 4(1):73–94

    Article  MathSciNet  MATH  Google Scholar 

  28. Ryder HE, Heal GM (1973) Optimal growth with intertemporally dependent preferences. Rev Econ Stud 40(1):1–31

    Article  MATH  Google Scholar 

  29. Smith A (1759) The theory of moral sentiments. London, Guttenberg

  30. Sorger G (1998) Markov-perfect Nash equilibria in a class of resource games. Econ Theory 11(1):79–100

    Article  MathSciNet  MATH  Google Scholar 

  31. Veblen T (1899) The theory of the leisure class: an economic study of institutions. Originally published in 1899. Reprinted (George Allen & Unwin, London), 1925

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Rouillon.

Appendix

Appendix

1.1 Proof of Condition 1

Suppose that \(q_{i}\left( t\right) =\left( c_{i}\left( t\right) -\alpha y\left( t\right) \right) /\left( 1-\alpha \right) =0\), for all i and t. Substituting \(c_{i}\left( t\right) =\alpha y\left( t\right) \), for all i and t, (1) and (2), respectively, write

$$\begin{aligned} \dot{x}\left( t\right) =-\alpha ny\left( t\right) \end{aligned}$$

and

$$\begin{aligned} \dot{y}\left( t\right) =-\left( 1-\alpha \right) \beta ny\left( t\right) \text{. } \end{aligned}$$

From this, we can obtain

$$\begin{aligned} x\left( t\right) =x_{0}-\frac{\alpha }{\left( 1-\alpha \right) \beta }y_{0}\left( 1-\mathrm{e}^{-\left( 1-\alpha \right) \beta nt}\right) \end{aligned}$$

and

$$\begin{aligned} y\left( t\right) =y_{0}\mathrm{e}^{-\left( 1-\alpha \right) \beta nt}\text{. } \end{aligned}$$

From \(y\left( t\right) \ge 0\), we verify that \(c_{i}\left( t\right) \ge 0\), for all t. It is clear that \(x\left( t\right) \ge 0\), for all t, if and only if \(x_{0}-\frac{\alpha }{\left( 1-\alpha \right) \beta }y_{0}\ge 0\). \(\square \)

1.2 Proof of Proposition 1

By concavity of \(u\left( \cdot \right) \), the cooperative solution is symmetric. Hence, substituting \(c_{i}\left( t\right) =c\left( t\right) \), for all i and t, the social problem is to choose \(c\left( \cdot \right) \) to maximize

$$\begin{aligned} \begin{array}{l} \int _{0}^{\infty }nu\left( q\left( t\right) \right) \mathrm{e}^{-\delta t}\mathrm{d}t\text {,}\\ \text {where:}\\ \dot{x}\left( t\right) =-nc\left( t\right) ,\quad x\left( 0\right) =x_{0}\text {,}\\ \dot{y}\left( t\right) =\beta n\left( c\left( t\right) -y\left( t\right) \right) ,\quad y\left( 0\right) =y_{0}\text {,}\\ q\left( t\right) \ge 0,\quad x\left( t\right) \ge 0\text {,} \end{array} \end{aligned}$$

where we write \(q\left( t\right) =\left( c\left( t\right) -\alpha y\left( t\right) \right) /\left( 1-\alpha \right) \) to simplify the notations.

Define the current-value Hamiltonian

$$\begin{aligned} H\left( x,y,\lambda ,\mu ,\eta ,c\right) =n\left[ u\left( q\right) -\lambda c+\beta \mu \left( c-y\right) +\eta q\right] , \end{aligned}$$

where \(\lambda \) and \(\mu \) are costate variables associated with the states x and y, and \(\eta \) is a Lagrangian multiplier associated with the feasibility constraint.

If a feasible control path \(c\left( \cdot \right) \), with the corresponding states trajectories \(x\left( \cdot \right) \) and \(y\left( \cdot \right) \), is optimal, there exists (continuous with piecewise-continuous derivatives) costate variables \(\lambda \left( \cdot \right) \) and \(\mu \left( \cdot \right) \), and a (continuous) multiplier \(\eta \left( \cdot \right) \) such that

$$\begin{aligned}&\frac{u^{\prime }\left( q\left( t\right) \right) }{1-\alpha }=\lambda \left( t\right) -\beta \mu \left( t\right) -\frac{\eta \left( t\right) }{1-\alpha },\quad \end{aligned}$$
(5)
$$\begin{aligned}&\eta \left( t\right) \ge 0,\quad q\left( t\right) \ge 0\quad \text{ and }\,\eta \left( t\right) q\left( t\right) =0 \end{aligned}$$
(6)
$$\begin{aligned}&\dot{\lambda }\left( t\right) =\delta \lambda \left( t\right) , \end{aligned}$$
(7)
$$\begin{aligned}&\dot{\mu }\left( t\right) =\left( \delta +\beta n\right) \mu \left( t\right) +\frac{\alpha }{1-\alpha }n\left( u^{\prime }\left( q\left( t\right) \right) +\eta \left( t\right) \right) , \end{aligned}$$
(8)
$$\begin{aligned}&\lim _{t\rightarrow \infty }\mathrm{e}^{-\delta t}\left( \lambda \left( t\right) x\left( t\right) +\mu \left( t\right) y\left( t\right) \right) =0. \end{aligned}$$
(9)

Now, \(f\left( z\right) \) being such that

$$\begin{aligned} \Theta \left( f\left( z\right) \right) \equiv \int _{0}^{f\left( z\right) }\sigma \left( s\right) \mathrm{d}s=\frac{\delta }{n}z,\quad \text{ for } \text{ all }\,z\ge 0, \end{aligned}$$

for all t, let \(c\left( t\right) \) be such that

$$\begin{aligned} q\left( t\right) =\frac{c\left( t\right) -\alpha y\left( t\right) }{1-\alpha }=f\left( x\left( t\right) -\frac{\alpha }{\left( 1-\alpha \right) \beta }y\left( t\right) \right) , \end{aligned}$$

where \(x\left( t\right) \) and \(y\left( t\right) \) are the corresponding states trajectories.

(1) Feasibility We first show, in Lemmas 1 and 2, that the proposed control path \(c\left( \cdot \right) \) is feasible.

Lemma 1

For all \(z>0\), \(f\left( z\right) >0\), and \(f\left( 0\right) =0\).

Proof

If \(z=0\), \(f\left( 0\right) =0\) follows from \(\Theta \left( 0\right) =0\). Likewise, \(\lim _{z\rightarrow \infty }f\left( z\right) =\infty \) follows from \(\lim _{q\rightarrow \infty }\Theta \left( q\right) =\infty \). If \(0<z<\infty \), as \(\Theta \left( 0\right)<\delta z/n<\lim _{q\rightarrow \infty }\Theta \left( q\right) \) and \(\Theta \left( q\right) \) is continuous, there exists \(0<f\left( z\right) <\infty \) such that \(\Theta \left( f\left( z\right) \right) =\delta z/n\) (by the intermediate value theorem). As \(\Theta \left( q\right) \) is increasing (since \(\Theta '\left( q\right) =\sigma \left( q\right) >0\) for all \(q>0\)), this solution is unique. \(\square \)

Lemma 2

For all t, \(q\left( t\right) \ge 0\) and \(x\left( t\right) \ge 0\).

Proof

By definition, the individual consumption path \(c\left( \cdot \right) \) generates trajectories \(x\left( \cdot \right) \) and \(y\left( \cdot \right) \), such that \(\dot{x}\left( t\right) =-nc\left( t\right) \), \(x\left( 0\right) =x_{0}\), and \(\dot{y}\left( t\right) =\beta n\left( c\left( t\right) -y\left( t\right) \right) \), \(y\left( 0\right) =y_{0}\). Thus, letting

$$\begin{aligned} z\left( t\right) =x\left( t\right) -\frac{\alpha }{\left( 1-\alpha \right) \beta }y\left( t\right) , \end{aligned}$$

we can show that

$$\begin{aligned} \dot{z}\left( t\right) =-n\left( \frac{c\left( t\right) -\alpha y\left( t\right) }{1-\alpha }\right) =-nf\left( z\left( t\right) \right) ,\quad z\left( 0\right) =x_{0}-\frac{\alpha }{\left( 1-\alpha \right) \beta }y_{0}\text{. } \end{aligned}$$

Under Condition 1, Lemma 1 implies that \(z\left( t\right) \ge 0\), for all t, and \(\lim _{t\rightarrow \infty }z\left( t\right) =0\). Now, substituting \(c\left( t\right) =\left( 1-\alpha \right) f\left( z\left( t\right) \right) +\alpha y\left( t\right) \), we can obtain

$$\begin{aligned} \dot{y}\left( t\right) =\left( 1-\alpha \right) \beta n\left( f\left( z\left( t\right) \right) -y\left( t\right) \right) ,\quad y\left( 0\right) =y_{0}, \end{aligned}$$

implying that

$$\begin{aligned} y\left( t\right) =\mathrm{e}^{-\left( 1-\alpha \right) \beta nt}\left( \left( 1-\alpha \right) \beta n\int _{0}^{t}\mathrm{e}^{\left( 1-\alpha \right) \beta ns}f\left( z\left( s\right) \right) \mathrm{d}s+y_{0}\right) \text{. } \end{aligned}$$

Clearly, as \(y_{0}\ge 0\) and \(f\left( z\left( t\right) \right) \ge 0\), for all t, \(y\left( t\right) \ge 0\), for all t. Finally, as \(y\left( t\right) \ge 0\) and \(z\left( t\right) \ge 0\), for all t, we can show that \(c\left( t\right) =\left( 1-\alpha \right) f\left( z\left( t\right) \right) +\alpha y\left( t\right) \ge 0\) and \(x\left( t\right) =\frac{\alpha }{\left( 1\,-\,\alpha \right) \beta }y\left( t\right) +z\left( t\right) \ge 0\), for all t. \(\square \)

Remark

Given that \(\lim _{t\rightarrow \infty }f\left( z\left( t\right) \right) =0\), we can show that \(\lim _{t\rightarrow \infty }y\left( t\right) =0\). It follows that \(\lim _{t\rightarrow \infty }x\left( t\right) =\lim _{t\rightarrow \infty }y\left( t\right) =\lim _{t\rightarrow \infty }z\left( t\right) =0\).

(2) Necessary Conditions Let T be the time when \(z\left( t\right) =0\) (including the possibility that \(T=\infty \)). We first construct \(\lambda \left( \cdot \right) \), \(\mu \left( \cdot \right) \) and \(\eta \left( \cdot \right) \) to simultaneously satisfy the maximum condition (5) and the adjoint Eqs. (7) and (8). We then show that the transversality condition (9) holds.

The following lemma will be useful below.

Lemma 3

The marginal utility \(u^{\prime }\left( f\left( z\left( t\right) \right) \right) \) grows at the rate \(\delta \), for all \(t<T\), and is equal to \(u'\left( 0\right) \), for all \(t\ge T\).

Proof

First remark that \(\Theta \left( f\left( z\right) \right) =\delta z/n\), for all z, implies that \(\sigma \left( f\left( z\right) \right) f^{\prime }\left( z\right) =\delta /n\), for all z (by differentiation). Define \(p\left( t\right) =u^{\prime }\left( f\left( z\left( t\right) \right) \right) \), for all t. If \(t<T\), differentiation yields

$$\begin{aligned} \dot{p}\left( t\right) =u''\left( f\left( z\left( t\right) \right) \right) f^{\prime }\left( z\left( t\right) \right) \dot{z}\left( t\right) \text {.} \end{aligned}$$

Substituting \(\dot{z}\left( t\right) =-nf\left( z\left( t\right) \right) \) and dividing by \(p\left( t\right) =u^{\prime }\left( f\left( z\left( t\right) \right) \right) \), we get

$$\begin{aligned} \frac{\dot{p}\left( t\right) }{p\left( t\right) }=n\sigma \left( f\left( z\left( t\right) \right) \right) f^{\prime }\left( z\left( t\right) \right) =\delta \text {.} \end{aligned}$$

If \(t\ge T\), \(z\left( t\right) =0\) (by definition) and \(f\left( 0\right) =0\) imply that \(p\left( t\right) =u^{\prime }\left( 0\right) \). \(\square \)

For all \(t<T\), let

$$\begin{aligned} \lambda \left( t\right) =u^{\prime }\left( f\left( z\left( t\right) \right) \right) ,\quad \mu \left( t\right) =-\frac{\alpha }{\left( 1-\alpha \right) \beta }u^{\prime }\left( f\left( z\left( t\right) \right) \right) \text{ and } \eta \left( t\right) =0\text{. } \end{aligned}$$
(10)

As \(u^{\prime }\left( f\left( z\left( t\right) \right) \right) /\left( 1-\alpha \right) =\lambda \left( t\right) -\beta \mu \left( t\right) -\eta \left( t\right) /\left( 1-\alpha \right) \) (by construction), the maximum condition (5) is satisfied if \(q\left( t\right) =f\left( z\left( t\right) \right) \). The adjoint Eqs. (7) and (8) are satisfied from Lemma 3.Footnote 20

For all \(t\ge T\), let

$$\begin{aligned} \lambda \left( t\right)= & {} \mathrm{e}^{\delta \left( t-T\right) }u^{\prime }\left( 0\right) ,\nonumber \\ \mu \left( t\right)= & {} -\frac{\alpha }{\left( 1-\alpha \right) \beta }\mathrm{e}^{\delta \left( t-T\right) }u^{\prime }\left( 0\right) \text{ and } \eta \left( t\right) =\left( \mathrm{e}^{\delta \left( t-T\right) }-1\right) u^{\prime }\left( 0\right) \text{. } \end{aligned}$$
(11)

As \(u^{\prime }\left( 0\right) /\left( 1-\alpha \right) =\lambda \left( t\right) -\beta \mu \left( t\right) -\eta \left( t\right) /\left( 1-\alpha \right) \) (by construction), the maximum condition (5) is satisfied if \(q\left( t\right) =f\left( 0\right) =0\). The adjoint Eqs. (7) and (8) are satisfied by construction.Footnote 21

To verify the transversality condition (9), define \(A\left( t\right) =\mathrm{e}^{-\delta t}\left( \lambda \left( t\right) x\left( t\right) +\mu \left( t\right) y\left( t\right) \right) \). We need to separate the cases where T is infinite or finite. If T is infinite, we can show that \(A\left( t\right) =u^{\prime }\left( f\left( z_{0}\right) \right) z\left( t\right) \), for all t. Then, the transversality condition follows from \(\lim _{t\rightarrow \infty }z\left( t\right) =0\) (see the proof of Lemma 2). If T is finite, we can show that \(A\left( t\right) =\mathrm{e}^{-\delta T}u^{\prime }\left( 0\right) z\left( t\right) \), for all \(t\ge T\). As \(z\left( t\right) =0\) for all \(t\ge T\) (by definition of T), the transversality condition is trivially satisfied.

(3) Sufficiency Conditions We show that the Hamiltonian, calculated with the adjoint variables and multiplier defined above, is strictly concave.

For \(t<T\), substituting (10), the Hamiltonian can be written after simplification

$$\begin{aligned} H\left( x,y,\lambda ,\mu ,\eta ,c\right) =n\left[ u\left( \frac{c-\alpha y}{1-\alpha }\right) -u^{\prime }\left( f\left( z\left( t\right) \right) \right) \frac{c-\alpha y}{1-\alpha }\right] . \end{aligned}$$

Likewise, for \(t\ge T\), substituting (11), we obtain

$$\begin{aligned} H\left( x,y,\lambda ,\mu ,\eta ,c\right) =n\left[ u\left( \frac{c-\alpha y}{1-\alpha }\right) -u^{\prime }\left( 0\right) \frac{c-\alpha y}{1-\alpha }\right] . \end{aligned}$$

Hence, under Assumption 1, the Hamiltonian is strictly concave in \(c_{i}\), x and y. This proves that Proposition 1 characterizes the unique optimal solution. \(\square \)

1.3 Proof of Corollary 1.

Along the cooperative path, we have \(q_{i}\left( t\right) =f\left( z\left( t\right) \right) \), where \(f\left( z\right) \) is implicitly defined by \(\Theta \left( f\left( z\right) \right) =\intop _{0}^{f\left( z\right) }\sigma \left( s\right) \mathrm{d}s=\delta z/n\) and \(z\left( t\right) \) satisfies \(\dot{z}\left( t\right) =-nf\left( z\left( t\right) \right) \) and \(z\left( 0\right) =z_{0}\). Given that \(f\left( z\right) >0\) for all \(z>0\) (see Lemma 1), it will be sufficient to show that \(z\left( t\right) >0\) for all t.

Assume that \(\sigma \left( q\right) \ge \mu \) for all q, for some \(\mu >0\). It follows that \(\Theta \left( q\right) \ge \mu q\). In particular, \(\Theta \left( f\left( z\right) \right) \ge \mu f\left( z\right) \). Using \(\Theta \left( f\left( z\right) \right) =\delta z/n\), this implies that \(f\left( z\right) \le \frac{\delta }{\mu }\frac{z}{n}\) and \(\dot{z}\left( t\right) =-nf\left( z\left( t\right) \right) \ge -\frac{\delta }{\mu }z\left( t\right) \). In turn, this allows to show that \(z\left( t\right) \ge z_{0}\mathrm{e}^{-\frac{\delta }{\mu }t}\). (Indeed, let \(F\left( t\right) =\mathrm{e}^{\frac{\delta }{\mu }t}z\left( t\right) \). Then \(F'\left( t\right) =\mathrm{e}^{\frac{\delta }{\mu }t}\left( \dot{z}\left( t\right) +\frac{\delta }{\mu }z\left( t\right) \right) \ge 0\) and \(F\left( t\right) \) is increasing. Hence, \(F\left( t\right) =\mathrm{e}^{\frac{\delta }{\mu }t}z\left( t\right) \ge z_{0}=F\left( 0\right) \) for all t). Assuming that \(z_{0}>0\), this proves that \(z\left( t\right) >0\) for all t.

1.4 Proof of Property 1

Denote by \(q^{\circ }\) the optimal individual subjective consumption. It satisfies \(\Theta \left( q^{\circ }\right) =\frac{\delta }{n}z\), where \(z=x-\frac{\alpha }{1-\alpha }\frac{y}{\beta }\). By differentiation, we can obtain

$$\begin{aligned} \frac{\hbox {d}q^{\circ }}{\hbox {d}\alpha }= & {} -\frac{\delta y}{\left( 1-\alpha \right) ^{2}\beta n\sigma \left( q^{\circ }\right) }<0,\\ \frac{\hbox {d}q^{\circ }}{\hbox {d}\beta }= & {} \frac{\alpha \delta y}{\left( 1-\alpha \right) \beta ^{2}n\sigma \left( q^{\circ }\right) }>0,\\ \frac{\hbox {d}q^{\circ }}{\hbox {d}\delta }= & {} \frac{z}{n\sigma \left( q^{\circ }\right) }>0,\\ \frac{\hbox {d}q^{\circ }}{\hbox {d}n}= & {} -\frac{\delta z}{n^{2}\sigma \left( q^{\circ }\right) }>0,\\ \frac{\hbox {d}q^{\circ }}{\hbox {d}x}= & {} \frac{\delta }{n\sigma \left( q^{\circ }\right) }>0,\\ \frac{\hbox {d}q^{\circ }}{\hbox {d}y}= & {} -\frac{\alpha \delta }{\left( 1-\alpha \right) \beta n\sigma \left( q^{\circ }\right) }<0\text{. } \end{aligned}$$

Now, denote by \(c^{\circ }\) the optimal individual consumption. It is given by \(c^{\circ }=\left( 1-\alpha \right) q^{\circ }+\alpha y\). Using the previous results, we get after differentiation and substitution

$$\begin{aligned} \frac{\hbox {d}c^{\circ }}{\hbox {d}\alpha }= & {} -q^{\circ }-\left( \frac{\delta }{\left( 1-\alpha \right) \beta n\sigma \left( q^{\circ }\right) }-1\right) y,\\ \frac{\hbox {d}c^{\circ }}{\hbox {d}\beta }= & {} \frac{\alpha \delta y}{\beta ^{2}n\sigma \left( q^{\circ }\right) }>0,\\ \frac{\hbox {d}c^{\circ }}{\hbox {d}\delta }= & {} \frac{\left( 1-\alpha \right) z}{n\sigma \left( q^{\circ }\right) }>0,\\ \frac{\hbox {d}c^{\circ }}{\hbox {d}n}= & {} -\frac{\left( 1-\alpha \right) \delta z}{n^{2}\sigma \left( q^{\circ }\right) }<0,\\ \frac{\hbox {d}c^{\circ }}{\hbox {d}x}= & {} \frac{\left( 1-\alpha \right) \delta }{n\sigma \left( q^{\circ }\right) }>0,\\ \frac{\hbox {d}c^{\circ }}{\hbox {d}y}= & {} -\left( \frac{\delta }{\beta n\sigma \left( q^{\circ }\right) }-1\right) \alpha \text{. } \end{aligned}$$

The comparative statics with respect to \(\alpha \) is ambiguous. If \(\left( 1-\alpha \right) \beta n\sigma \left( q^{\circ }\right) \le \delta \), knowing that \(q^{\circ }>0\), we show that \(\hbox {d}c^{\circ }/\hbox {d}\alpha <0\). Otherwise, the derivative \(\hbox {d}c^{\circ }/\hbox {d}\alpha \) can be negative, zero or positive, depending on \(q^{\circ }\) and y. However, let S be the set of all pairs x and y such that \(x-\frac{\alpha }{\left( 1\,-\,\alpha \right) \beta }y=z\), as shown in Fig. 7.

Fig. 7
figure 7

\(S=\left\{ (x,y)\in {\mathbb {R}}_{+}^{2};x-\frac{\alpha }{(1-\alpha )\beta }y=z\right\} \)

Remark that \(q^{\circ }=f\left( z\right) \), for all \(\left( x,y\right) \in S\). Thus, since \(\left( 1-\alpha \right) \beta n\sigma \left( q^{\circ }\right) >\delta \) and \(q^{\circ }\) is constant, \(\hbox {d}c^{\circ }/\hbox {d}\alpha \) is linearly decreasing in y, for all \(\left( x,y\right) \in S\). This proves that for all \(\left( x,y\right) \in S\), there exists \(\theta >0\) such that \(dc^{\circ }/d\alpha \gtreqless 0\) if and only if \(y/x\gtreqless \theta \). This completes the proof of Property 1. \(\square \)

1.5 Proof of Proposition 2

Consider any player i. Assume that all individuals \(j\ne i\) play the stationary Markovian strategy \(s_{j}^{*}\left( x,y\right) =\left( 1-\alpha \right) g\left( x-\frac{\alpha }{\left( 1-\alpha \right) \beta }y\right) +\alpha y\) , where \(g\left( z\right) \) satisfies

$$\begin{aligned} \Psi \left( g\left( z\right) \right) \equiv \int _{0}^{g\left( z\right) }\left( \sigma \left( s\right) -\left( n-1\right) /n\right) \mathrm{d}s=\frac{\delta }{n}z,\quad \text{ for } \text{ all }\,z\ge 0\text{. } \end{aligned}$$

The problem of the remaining player i is to find a consumption path, \(c_{i}\left( \cdot \right) \), maximizing

$$\begin{aligned} \begin{array}{l} \int _{0}^{\infty }u\left( q_{i}\left( t\right) \right) \mathrm{e}^{-\delta t}\mathrm{d}t\text {,}\\ \text {where:}\\ \dot{x}\left( t\right) =-\left( c_{i}\left( t\right) +\sum \limits _{j\ne i}s_{j}^{*}\left( x\left( t\right) ,y\left( t\right) \right) \right) ,\quad x\left( 0\right) =x_{0}\text {,}\\ \dot{y}\left( t\right) =\beta \left( c_{i}\left( t\right) +\sum \limits _{j\ne i}s_{j}^{*}\left( x\left( t\right) ,y\left( t\right) \right) -ny\left( t\right) \right) ,\quad y\left( 0\right) =y_{0}\text {,}\\ q_{i}\left( t\right) \ge 0\quad \text {and}\,x\left( t\right) \ge 0, \end{array} \end{aligned}$$

where we write \(q_{i}\left( t\right) =\left( c_{i}\left( t\right) -\alpha y\left( t\right) \right) /\left( 1-\alpha \right) \) to simplify the notations.

Define the current-value Hamiltonian

$$\begin{aligned} H_{i}\left( x,y,\lambda _{i},\mu _{i},\eta _{i},c_{i}\right)&=u\left( q_{i}\right) -\lambda _{i}\left( c_{i}+{\textstyle \sum \limits _{j\ne i}}s_{j}^{*}\left( x,y\right) \right) \\&\quad +\beta \mu _{i}\left( c_{i}+{\textstyle \sum \limits _{j\ne i}}s_{j}^{*}\left( x,y\right) -ny\right) +\eta _{i}q_{i}\\&=u\left( q_{i}\right) -\left( \lambda _{i}-\beta \mu _{i}\right) \left( c_{i}+{\textstyle \sum \limits _{j\ne i}}s_{j}^{*}\left( x,y\right) \right) -\beta n\mu _{i}y+\eta _{i}q_{i} \end{aligned}$$

where \(\lambda _{i}\) and \(\mu _{i}\) are costate variables associated with the states x and y, and \(\eta _{i}\) is a Lagrangian multiplier associated with the feasibility constraint.

If a feasible control path \(c_{i}\left( \cdot \right) \), with the corresponding states trajectories \(x\left( \cdot \right) \) and \(y\left( \cdot \right) \), is optimal, there exists (continuous with piecewise-continuous derivatives) costate variables \(\lambda _{i}\left( \cdot \right) \) and \(\mu _{i}\left( \cdot \right) \), and a (continuous) multiplier \(\eta _{i}\left( \cdot \right) \) such thatFootnote 22

$$\begin{aligned} \frac{u^{\prime }\left( q_{i}\left( t\right) \right) }{1-\alpha }= & {} \lambda _{i}\left( t\right) -\beta \mu _{i}\left( t\right) -\frac{\eta _{i}\left( t\right) }{1-\alpha }, \end{aligned}$$
(12)
$$\begin{aligned} \eta _{i}\left( t\right)\ge & {} 0,\quad q_{i}\left( t\right) \ge 0\quad \text{ and }\,\eta _{i}\left( t\right) q_{i}\left( t\right) =0, \end{aligned}$$
(13)
$$\begin{aligned} \dot{\lambda }_{i}\left( t\right)= & {} \delta \lambda _{i}\left( t\right) +\left( \lambda _{i}\left( t\right) -\beta \mu _{i}\left( t\right) \right) \left( n-1\right) \left( 1-\alpha \right) g'\left( z\left( t\right) \right) , \end{aligned}$$
(14)
$$\begin{aligned} \dot{\mu }_{i}\left( t\right)= & {} \left( \delta +\beta n\right) \mu _{i}\left( t\right) +\left( \lambda _{i}\left( t\right) -\beta \mu _{i}\left( t\right) \right) \left( n-1\right) \frac{\alpha }{\beta }\left( \beta -g'\left( z\left( t\right) \right) \right) \nonumber \\&\quad +\frac{\alpha }{1-\alpha }\left( u^{\prime }\left( q_{i}\left( t\right) \right) +\eta _{i}\left( t\right) \right) \end{aligned}$$
(15)
$$\begin{aligned}&\lim _{t\rightarrow \infty }\mathrm{e}^{-\delta t}\left( \lambda _{i}\left( t\right) x\left( t\right) +\mu _{i}\left( t\right) y\left( t\right) \right) =0, \end{aligned}$$
(16)

where we write \(z\left( t\right) =x\left( t\right) -\frac{\alpha }{\left( 1-\alpha \right) \beta }y\left( t\right) \).

Now, let \(c_{i}\left( t\right) \), for all t, satisfy

$$\begin{aligned} c_{i}\left( t\right) =\left( 1-\alpha \right) g\left( x\left( t\right) -\frac{\alpha }{\left( 1-\alpha \right) \beta }y\left( t\right) \right) +\alpha y\left( t\right) , \end{aligned}$$

where \(x\left( t\right) \) and \(y\left( t\right) \) are the corresponding states trajectories. Remark that it is equivalent to write

$$\begin{aligned} q_{i}\left( t\right) =g\left( x\left( t\right) -\frac{\alpha }{\left( 1-\alpha \right) \beta }y\left( t\right) \right) \text{. } \end{aligned}$$

We show below that the proposed consumption path \(c_{i}\left( \cdot \right) \) is feasible, and we find \(\lambda _{i}\left( \cdot \right) \), \(\mu _{i}\left( \cdot \right) \) and \(\eta _{i}\left( \cdot \right) \), to satisfy conditions (12) to (16). Proposition 2 follows.

(1) Feasibility We first show, in Lemmas 4 and 5, that the proposed control path \(c_{i}\left( \cdot \right) \) is feasible.

Lemma 4

For all \(z>0\), \(g\left( z\right) >0\), and \(g\left( 0\right) =0\).

Proof

If \(z=0\), \(g\left( 0\right) =0\) follows from \(\Psi \left( 0\right) =0\). Likewise, \(\lim _{z\rightarrow \infty }g\left( z\right) =\infty \) follows from \(\lim _{q\rightarrow \infty }\Psi \left( q\right) =\infty \). If \(0<z<\infty \), as \(\Psi \left( 0\right)<\delta z/n<\lim _{q\rightarrow \infty }\Psi \left( q\right) \) and \(\Psi \left( q\right) \) is continuous, there exists \(0<g\left( z\right) <\infty \) such that \(\Psi \left( g\left( z\right) \right) =\delta z/n\) (by the intermediate value theorem). As \(\Psi \left( q\right) \) is increasing (assuming \(\Psi '\left( q\right) =\sigma \left( q\right) -\left( n-1\right) /n>0\) for all \(q>0\)), this solution is unique. \(\square \)

Lemma 5

For all t, \(q_{i}\left( t\right) \ge 0\) and \(x\left( t\right) \ge 0\).

Proof

By definition, the individual consumption path \(c_{i}\left( \cdot \right) \) generates trajectories \(x\left( \cdot \right) \) and \(y\left( \cdot \right) \), such that \(\dot{x}\left( t\right) =-\sum \limits _{j=1}^{n}c_{j}\left( t\right) \), \(x\left( 0\right) =x_{0}\), and \(\dot{y}\left( t\right) =\beta \left( \sum \limits _{j=1}^{n}c_{j}\left( t\right) -ny\left( t\right) \right) \), \(y\left( 0\right) =y_{0}\). Thus, letting

$$\begin{aligned} z\left( t\right) =x\left( t\right) -\frac{\alpha }{\left( 1-\alpha \right) \beta }y\left( t\right) , \end{aligned}$$

we can show that

$$\begin{aligned} \dot{z}\left( t\right) =-\sum \limits _{j=1}^{n}\frac{c_{j}\left( t\right) -\alpha y\left( t\right) }{1-\alpha }=-ng\left( z\left( t\right) \right) ,\quad z\left( 0\right) =x_{0}-\frac{\alpha }{\left( 1-\alpha \right) \beta }y_{0}\text{. } \end{aligned}$$

Under Condition 1, Lemma 4 implies that \(z\left( t\right) \ge 0\), for all t, and \(\lim _{t\rightarrow \infty }z\left( t\right) =0\). Now, substituting \(c_{j}\left( t\right) =\left( 1-\alpha \right) g\left( z\left( t\right) \right) +\alpha y\left( t\right) \), for all j, we can obtain

$$\begin{aligned} \dot{y}\left( t\right) =\left( 1-\alpha \right) \beta n\left( g\left( z\left( t\right) \right) -y\left( t\right) \right) ,\quad y\left( 0\right) =y_{0}, \end{aligned}$$

implying that

$$\begin{aligned} y\left( t\right) =\mathrm{e}^{-\left( 1-\alpha \right) \beta nt}\left( \left( 1-\alpha \right) \beta n\int _{0}^{t}\mathrm{e}^{\left( 1-\alpha \right) \beta ns}g\left( z\left( s\right) \right) \mathrm{d}s+y_{0}\right) \text{. } \end{aligned}$$

Clearly, as \(y_{0}\ge 0\) and \(g\left( z\left( t\right) \right) \ge 0\), for all t, \(y\left( t\right) \ge 0\), for all t. Finally, as \(y\left( t\right) \ge 0\) and \(z\left( t\right) \ge 0\), for all t, we can show that \(c\left( t\right) =\alpha y\left( t\right) +\left( 1-\alpha \right) g\left( z\left( t\right) \right) \ge 0\) and \(x\left( t\right) =\frac{\alpha }{\left( 1-\alpha \right) \beta }y\left( t\right) +z\left( t\right) \ge 0\), for all t. \(\square \)

Remark

Given that \(\lim _{t\rightarrow \infty }g\left( z\left( t\right) \right) =0\), \(\lim _{t\rightarrow \infty }y\left( t\right) =0\). Hence, we can show that \(\lim _{t\rightarrow \infty }x\left( t\right) =\lim _{t\rightarrow \infty }y\left( t\right) =\lim _{t\rightarrow \infty }z\left( t\right) =0\).

(2) Necessary Conditions Let T be the time when \(z\left( t\right) =0\) (including the possibility that \(T=\infty \)). We first construct \(\lambda _{i}\left( \cdot \right) \), \(\mu _{i}\left( \cdot \right) \) and \(\eta _{i}\left( \cdot \right) \) to simultaneously satisfy the maximum condition (12) and the adjoint Eqs. (14) and (15). We then show that the transversality condition (16) holds.

The following lemma will be useful below.

Lemma 6

The marginal utility \(u^{\prime }\left( g\left( z\left( t\right) \right) \right) \) grows at the rate \(\delta +\left( n-1\right) g'\left( z\left( t\right) \right) \), for all \(t<T\), and is equal to \(u'\left( 0\right) \), for all \(t\ge T\).

Proof

First remark that \(\Psi \left( g\left( z\right) \right) =\delta z/n\), for all z, implies that \(\sigma \left( g\left( z\right) \right) g'\left( z\right) =\left( \delta +\left( n-1\right) g'\left( z\right) \right) /n\), for all z (by differentiation). Define \(p\left( t\right) =u'\left( g\left( z\left( t\right) \right) \right) \), for all t. If \(t<T\), differentiation yields

$$\begin{aligned} \dot{p}\left( t\right) =u''\left( g\left( z\left( t\right) \right) \right) g'\left( z\left( t\right) \right) \dot{z}\left( t\right) \text {.} \end{aligned}$$

Substituting \(\dot{z}\left( t\right) =-ng\left( z\left( t\right) \right) \) and dividing by \(p\left( t\right) =u^{\prime }\left( g\left( z\left( t\right) \right) \right) \), we get

$$\begin{aligned} \frac{\dot{p}\left( t\right) }{p\left( t\right) }=n\sigma \left( g\left( z\left( t\right) \right) \right) g'\left( z\left( t\right) \right) =\delta +\left( n-1\right) g'\left( z\left( t\right) \right) \text {.} \end{aligned}$$

If \(t\ge T\), \(z\left( t\right) =0\) (by definition) and \(g\left( 0\right) =0\) imply that \(p\left( t\right) =u^{\prime }\left( 0\right) \). \(\square \)

For all \(t<T\), let

$$\begin{aligned} \lambda _{i}\left( t\right) =u'\left( g\left( z\left( t\right) \right) \right) ,\quad \mu _{i}\left( t\right) =-\frac{\alpha }{\left( 1-\alpha \right) \beta }u'\left( g\left( z\left( t\right) \right) \right) \text{ and } \eta _{i}\left( t\right) =0\text{. } \end{aligned}$$
(17)

As \(u'\left( g\left( z\left( t\right) \right) \right) /\left( 1-\alpha \right) =\lambda _{i}\left( t\right) -\beta \mu _{i}\left( t\right) -\eta _{i}\left( t\right) /\left( 1-\alpha \right) \) (by construction), the maximum condition (12) is satisfied if \(q_{i}\left( t\right) =g\left( z\left( t\right) \right) \). The adjoint Eqs. (14) and (15) are satisfied from Lemma 6.Footnote 23

For all \(t\ge T\), let

$$\begin{aligned} \lambda _{i}\left( t\right) =\mathrm{e}^{\rho \left( t-T\right) }u^{\prime }\left( 0\right) ,\quad \mu _{i}\left( t\right) =-\frac{\alpha }{\left( 1-\alpha \right) \beta }\mathrm{e}^{\rho \left( t-T\right) }u^{\prime }\left( 0\right) \text{ and } \eta _{i}\left( t\right) =\left( \mathrm{e}^{\rho \left( t-T\right) }-1\right) u^{\prime }\left( 0\right) ,\nonumber \\ \end{aligned}$$
(18)

where we let \(\rho \equiv \delta +\left( n-1\right) g'\left( 0\right) \). As \(u^{\prime }\left( 0\right) /\left( 1-\alpha \right) =\lambda _{i}\left( t\right) -\beta \mu _{i}\left( t\right) -\eta _{i}\left( t\right) /\left( 1-\alpha \right) \) (by construction), the maximum condition (12) is satisfied if \(q_{i}\left( t\right) =g\left( 0\right) =0\). The adjoint Eqs. (14) and (15) are satisfied by construction.Footnote 24

To verify the transversality condition (16), define \(A_{i}\left( t\right) =\mathrm{e}^{-\delta t}\left( \lambda _{i}\left( t\right) x\left( t\right) +\mu _{i}\left( t\right) y\left( t\right) \right) \). We need to separate the cases where T is infinite or finite. If T is infinite, we can show that \(A_{i}\left( t\right) =\mathrm{e}^{-\delta t}u'\left( g\left( z\left( t\right) \right) \right) z\left( t\right) \) for all t. By Lemma 6, we can get by differentiation

$$\begin{aligned} \frac{\dot{A}_{i}\left( t\right) }{A_{i}\left( t\right) }=\left( n-1\right) g'\left( z\left( t\right) \right) -n\frac{g\left( z\left( t\right) \right) }{z\left( t\right) }\text{. } \end{aligned}$$

Since \(\lim _{t\rightarrow \infty }z\left( t\right) =0\) (see the proof of Lemma 5) and \(g\left( 0\right) =0\), we have

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{g\left( z\left( t\right) \right) }{z\left( t\right) }=\lim _{\varepsilon \rightarrow 0}\frac{g\left( \varepsilon \right) -g\left( 0\right) }{\varepsilon }=g'\left( 0\right) , \end{aligned}$$

which implies that

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{\dot{A}_{i}\left( t\right) }{A_{i}\left( t\right) }=-g'\left( 0\right) \text{. } \end{aligned}$$

As \(g'\left( 0\right) >0\) by assumption, it follows that \(\lim _{t\rightarrow \infty }A_{i}\left( t\right) =0\). If T is finite, we can show that \(A_{i}\left( t\right) =\mathrm{e}^{-\delta t}\mathrm{e}^{\rho \left( t-T\right) }u^{\prime }\left( 0\right) z\left( t\right) \) for all \(t\ge T\). As \(z\left( t\right) =0\) for all \(t\ge T\) (by definition of T), the transversality condition is trivially satisfied.

(3) Sufficiency conditionsWe show that the Hamiltonian, calculated with the adjoint variables and multiplier defined above, is strictly concave.

For \(t<T\), using \(s_{j}^{*}\left( x,y\right) =\left( 1-\alpha \right) g\left( x-\frac{\alpha }{\left( 1-\alpha \right) \beta }y\right) +\alpha y\) and substituting (17), the Hamiltonian can be written after simplification

$$\begin{aligned}&H_{i}\left( x,y,\lambda _{i},\mu _{i},\eta _{i},c_{i}\right) \\&\quad =u\left( \frac{c_{i}-\alpha y}{1-\alpha }\right) -u'\left( g\left( z\left( t\right) \right) \right) \frac{c_{i}-\alpha y}{1-\alpha }-u'\left( g\left( z\left( t\right) \right) \right) \left( n-1\right) g\left( x-\frac{\alpha }{\left( 1-\alpha \right) \beta }y\right) . \end{aligned}$$

Likewise, for \(t\ge T\), using \(s_{j}^{*}\left( x,y\right) =\left( 1-\alpha \right) g\left( x-\frac{\alpha }{\left( 1-\alpha \right) \beta }y\right) +\alpha y\) and substituting (18), we obtain

$$\begin{aligned}&H_{i}\left( x,y,\lambda _{i},\mu _{i},\eta _{i},c_{i}\right) \\&\quad =u\left( \frac{c_{i}-\alpha y}{1-\alpha }\right) -u^{\prime }\left( 0\right) \frac{c_{i}-\alpha y}{1-\alpha }-\mathrm{e}^{\rho \left( t-T\right) }u^{\prime }\left( 0\right) \left( n-1\right) g\left( x-\frac{\alpha }{\left( 1-\alpha \right) \beta }y\right) . \end{aligned}$$

Using \(\Psi \left( g\left( z\right) \right) =\delta z/n\), for all z, we can show by differentiation that \(g'\left( z\right) =\delta /\left( n\sigma \left( g\left( z\right) \right) -n+1\right) \) and \(g''\left( z\right) =-\delta ^{2}/\left( \sigma \left( g\left( z\right) \right) -\left( n-1\right) /n\right) ^{3}<0\), for all z. Hence, under assumption 1, the Hamiltonian is strictly concave in \(c_{i}\), x and y. This proves that the strategy considered above is the unique best-reply of player i to the strategies \(s_{j}^{*}\left( x,y\right) \) played by the other players. \(\square \)

1.6 Proof of Corollary 2.

Along the noncooperative path, we have \(q_{i}\left( t\right) =g\left( z\left( t\right) \right) \), where \(g\left( z\right) \) is implicitly defined by \(\Psi \left( g\left( z\right) \right) \equiv \int _{0}^{g\left( z\right) }\left( \sigma \left( s\right) -\left( n-1\right) /n\right) \mathrm{d}s=\frac{\delta }{n}z\) and \(z\left( t\right) \) satisfies \(\dot{z}\left( t\right) =-ng\left( z\left( t\right) \right) \) and \(z\left( 0\right) =z_{0}\). Given that \(g\left( z\right) >0\) for all \(z>0\) (see Lemma 4), it will be sufficient to show that \(z\left( t\right) >0\) for all t.

Assume that \(\sigma \left( q\right) -\left( n-1\right) /n\ge \mu \) for all q, for some \(\mu >0\). It follows that \(\Psi \left( q\right) \ge \mu q\). In particular, \(\Psi \left( f\left( z\right) \right) \ge \mu f\left( z\right) \). Using \(\Psi \left( f\left( z\right) \right) =\delta z/n\), this implies that \(g\left( z\right) \le \frac{\delta }{\mu }\frac{z}{n}\) and \(\dot{z}\left( t\right) =-ng\left( z\left( t\right) \right) \ge -\frac{\delta }{\mu }z\left( t\right) \). In turn, this allows to show that \(z\left( t\right) \ge z_{0}\mathrm{e}^{-\frac{\delta }{\mu }t}\).(Indeed, let \(F\left( t\right) =\mathrm{e}^{\frac{\delta }{\mu }t}z\left( t\right) \). Then \(F'\left( t\right) =\mathrm{e}^{\frac{\delta }{\mu }t}\left( \dot{z}\left( t\right) +\frac{\delta }{\mu }z\left( t\right) \right) \ge 0\) and \(F\left( t\right) \) is increasing. Hence, \(F\left( t\right) =\mathrm{e}^{\frac{\delta }{\mu }t}z\left( t\right) \ge z_{0}=F\left( 0\right) \) for all t.) Assuming that \(z_{0}>0\), this proves that \(z\left( t\right) >0\) for all t.

1.7 Proof of Property 2

Denote by \(q^{*}\) the Nash equilibrium individual subjective consumption. It satisfies \(\Psi \left( q^{*}\right) =\Theta \left( q^{*}\right) -\frac{n-1}{n}q^{*}=\frac{\delta }{n}z\), where \(z=x-\frac{\alpha }{\left( 1\,-\,\alpha \right) \beta }y\). Remember that the elasticity of the marginal utility \(\sigma \left( \cdot \right) \) is assumed larger than \(\left( n-1\right) /n\). By differentiation, we can obtain

$$\begin{aligned} \frac{\mathrm{d}q^{*}}{\mathrm{d}\alpha }= & {} -\frac{\delta y}{\left( 1-\alpha \right) ^{2}\beta n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }<0, \\ \frac{\mathrm{d}q^{*}}{\mathrm{d}\beta }= & {} \frac{\alpha \delta y}{\left( 1-\alpha \right) \beta ^{2}n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }>0, \\ \frac{\mathrm{d}q^{*}}{\mathrm{d}\delta }= & {} \frac{z}{n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }>0, \\ \frac{\mathrm{d}q^{*}}{\mathrm{d}n}= & {} -\frac{\Theta \left( q^{*}\right) -q^{*}}{n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }, \\ \frac{\mathrm{d}q^{*}}{\mathrm{d}x}= & {} \frac{\delta }{n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }>0, \\ \frac{\mathrm{d}q^{*}}{\mathrm{d}y}= & {} -\frac{\alpha \delta }{\left( 1-\alpha \right) \beta n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }<0\text{. } \end{aligned}$$

The comparative statics with respect to n is ambiguous. However, by the mean value theorem, given that \(\Theta \left( 0\right) =0\), there exists q, with \(0<q<q^{*}\), such that

$$\begin{aligned} \Theta \left( q^{*}\right) =\sigma \left( q\right) q^{*}\text{. } \end{aligned}$$

Assume that \(\sigma \left( q\right) >1\) for all q. Then, \(\Theta \left( q^{*}\right) >q^{*}\), implying that \(\mathrm{d}q^{*}/\mathrm{d}n<0\). Likewise, one can prove that \(\mathrm{d}q^{*}/\mathrm{d}n=0\) if \(\sigma \left( q\right) =1\), for all q, and \(\mathrm{d}q^{*}/\mathrm{d}n>0\) if \(\sigma \left( q\right) <1\), for all q.

Now, denote by \(c^{*}\) the optimal individual consumption. It is given by \(c^{*}=\left( 1-\alpha \right) q^{*}+\alpha y\). Using the previous results, we get after differentiation and substitution

$$\begin{aligned} \frac{\mathrm{d}c^{*}}{\mathrm{d}\alpha }= & {} -q^{*}-\left( \frac{\delta }{\left( 1-\alpha \right) \beta n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }-1\right) y_{0},\\ \frac{\hbox {d}c^{*}}{\mathrm{d}\beta }= & {} \frac{\alpha \delta y}{\beta ^{2}n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }>0,\\ \frac{\hbox {d}c^{*}}{\mathrm{d}\delta }= & {} \frac{\left( 1-\alpha \right) z}{n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }>0,\\ \frac{\hbox {d}c^{*}}{\mathrm{d}n}= & {} -\frac{\left( 1-\alpha \right) \left( \Theta \left( q^{*}\right) -q^{*}\right) }{n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) },\\ \frac{\hbox {d}c^{*}}{\mathrm{d}x}= & {} \frac{\left( 1-\alpha \right) \delta }{n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }>0,\\ \frac{\hbox {d}c^{*}}{\mathrm{d}y}= & {} -\left( \frac{\delta }{\beta n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) }-1\right) \alpha \text{. } \end{aligned}$$

The comparative statics with respect to \(\alpha \) is ambiguous. If \(\left( 1-\alpha \right) \beta n\left( \sigma \left( q^{*}\right) -\frac{n-1}{n}\right) \le \delta \), knowing that \(q^{*}>0\), we show that \(\mathrm{d}c^{*}/\mathrm{d}\alpha <0\). Otherwise, the derivative \(\mathrm{d}c^{*}/\mathrm{d}\alpha \) can be negative, zero or positive, depending on \(q^{*}\) and \(y_{0}\). Indeed, let S be the set of all pairs x and y such that \(x-\frac{\alpha }{1-\alpha }\frac{y}{\beta }=z\), as drawn in Fig. 7. Remark that \(q^{*}=g\left( z\right) \), for all \(\left( x,y\right) \in S\). Thus, since \(\left( 1-\alpha \right) \beta n\left( \sigma \left( q^{*}\right) -\left( n-1\right) /n\right) >\delta \) and \(q^{*}\) is constant, \(dc^{*}/d\alpha \) is linearly decreasing in y. This proves that for all \(\left( x,y\right) \in S\), there exists \(\theta >0\) such that \(dc^{*}/d\alpha \gtreqless 0\) if and only if \(y/x\gtreqless \theta \). Using the same argument as for \(q^{*}\), we can show that \(dc^{*}/dn\gtreqless 0\) when \(\sigma \left( q^{*}\right) \lesseqgtr 1\). This completes the proof of Property 2. \(\square \)

1.8 Proof of Property 3

Using results from the proofs of Properties 1 and 2, we can obtain

$$\begin{aligned} \frac{\mathrm{d}\Delta }{\mathrm{d}\alpha }= & {} -\left( q^{*}-q^{\circ }\right) -\left( \frac{1}{\sigma \left( q^{*}\right) -\frac{n-1}{n}}-\frac{1}{\sigma \left( q^{\circ }\right) }\right) \frac{\delta y}{\left( 1-\alpha \right) \beta n},\\ \frac{\mathrm{d}\Delta }{\mathrm{d}\beta }= & {} \left( \frac{1}{\sigma \left( q^{*}\right) -\frac{n-1}{n}}-\frac{1}{\sigma \left( q^{\circ }\right) }\right) \frac{\alpha \delta y}{\beta ^{2}n},\\ \frac{\mathrm{d}\Delta }{\mathrm{d}y_{0}}= & {} -\left( \frac{1}{\sigma \left( q^{*}\right) -\frac{n-1}{n}}-\frac{1}{\sigma \left( q^{\circ }\right) }\right) \frac{\alpha \delta }{\beta n}\text{. } \end{aligned}$$

It follows that \(\sigma \left( q^{*}\right) -\sigma \left( q^{\circ }\right) \le \left( n-1\right) /n\) implies \(\mathrm{d}\Delta /\mathrm{d}\alpha <0\) (using \(q^{*}>q^{\circ }\)). It is immediate that \(\mathrm{d}\Delta /\mathrm{d}\beta \gtreqless 0\) and \(\mathrm{d}\Delta /\mathrm{d}y\lesseqgtr 0\) if and only if \(\sigma \left( q^{*}\right) -\sigma \left( q^{\circ }\right) \lesseqgtr \left( n-1\right) /n\).

Given that \(q^{*}>q^{\circ }\), it is easy to see that \(\sigma \left( q^{*}\right) -\sigma \left( q^{\circ }\right) <\left( n-1\right) /n\) will be true if the elasticity of marginal utility is nonincreasing. It will also be true if \(\left| \sigma \left( q\right) -\sigma \left( q'\right) \right| <\left( n-1\right) /n\), for all q and \(q'\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouillon, S. Cooperative and Noncooperative Extraction in a Common Pool with Habit Formation. Dyn Games Appl 7, 468–491 (2017). https://doi.org/10.1007/s13235-016-0192-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-016-0192-4

Keywords

JEL Classification

Navigation