Skip to main content
Log in

Monoclinic Phase and Competition Between Transformation Modes in the Phase Transition Between Orthorhombic and Triclinic Phases of Crystalline Polyethylene

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We describe the results of the molecular dynamics (MD) simulation1 of shear-induced martensitic phase transition between the orthorhombic and triclinic phases of crystalline polyethylene (PE). The transition is induced according to two transformation modes observed in experiment on PE single crystals. The kinetics of the transitions proves to depend on the shear rate. Rapid deformation favors the transition directly to the triclinic phase. On the other hand, slow deformation favors the two-stage transition: first to the intermediate monoclinic phase and only then to the triclinic phase. The second way corresponds to the experiment on extended chain PE. We explain this result and analyze the competition between different transformation and plastic deformation modes. Rotations of PE chains around their axes necessary for the transition between the orthorhombic and non-orthorhombic phases are executed by short twist defects diffusing along the chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Strelnikov and E. A. Zubova, Phys. Rev. B, 99, 134104 (2019).

    Article  CAS  Google Scholar 

  2. H. Kiho, A. Peterlin, and P. H. Geil, J. Appl. Phys., 35, 1599 (1964).

    Article  CAS  Google Scholar 

  3. P. Allan and M. Bevis, Proc. R. Soc. A, 341, 75 (1974).

    CAS  Google Scholar 

  4. H. Miyaji, T. Asahi, Y. Miyamoto, and K. Asai, J. Polym. Sci. B: Polym. Phys, 25, 159 (1987).

    Article  CAS  Google Scholar 

  5. L. Fontana, D. Q. Vinh, M. Santoro, S. Scandolo, F. A. Gorelli, R. Bini, and M. Hanfland, Phys. Rev., B 75, 174112 (2007).

    Article  CAS  Google Scholar 

  6. T. Seto, T. Hara, and K. Tanaka, Jpn. J. Appl. Phys., 7, 31 (1968).

    Article  CAS  Google Scholar 

  7. R. J. Young and P. B. Bowden, Philos. Mag., 29, 1061 (1974).

    Article  CAS  Google Scholar 

  8. M. Bevis and E. B. Crellin, Polymer, 12, 666 (1971).

    Article  CAS  Google Scholar 

  9. P. Allan, E. B. Crellin, and M. Bevis, Philos. Mag., 27, 127 (1973).

    Article  CAS  Google Scholar 

  10. P. Allan and M. Bevis, Proc. R. Soc. A, 341, 75 (1974).

    CAS  Google Scholar 

  11. A. F. Acton, M. Bevis, A. G. Crocker, and N. D. H. Ross, Proc. R. Soc. A, 320, 101 (1970).

    Google Scholar 

  12. L. Fontana, M. Santoro, R. Bini, D. Q. Vinh, and S. Scandolo, J. Chem. Phys., 133, 204502 (2010).

    Article  CAS  Google Scholar 

  13. T. E. Cheatham, P. Cieplak, and P. A. Kollman, J. Biomol. Struct. Dyn., 16, 845 (1999).

    Article  CAS  Google Scholar 

  14. S. Plimpton, J. Comput. Phys., 117, 1 (1995).

    Article  CAS  Google Scholar 

  15. http://lammps.sandia.gov/index.html.

  16. W. Humphrey, A. Dalke, and K. Schulten, J. Molec. Graphics, 1996, Vol. 14, pp. 33–38. http://www.ks.uiuc.edu/Research/vmd/.

    Article  CAS  Google Scholar 

  17. E. A. Zubova, N. K. Balabaev, A. I. Musienko, E. B. Gusarova, M. A. Mazo, L. I. Manevitch, and A. A. Berlin, J. Chem. Phys., 136, 224906 (2012).

    Article  CAS  Google Scholar 

  18. E. A. Zubova, Polymorphism and Melting in Crystalline Polyethylene and Alkanes: Molecular Dynamics Simulations, in Encyclopedia of Polymers and Composites, S. Palsule, Ed., Springer, Berlin, Heidelberg, 2013.

    Google Scholar 

Download references

Acknowledgment

The work was supported by the Program of Fundamental Researches of the Russian Academy of Sciences (project no. 0082-2019-0005). The calculations were carried out in the Joint Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Zubova.

Additional information

Supporting information

Information is available regarding the details of molecular dynamics simulations in our previous work.1

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strelnikov, I.A., Zubova, E.A. Monoclinic Phase and Competition Between Transformation Modes in the Phase Transition Between Orthorhombic and Triclinic Phases of Crystalline Polyethylene. Macromol. Res. 29, 851–854 (2021). https://doi.org/10.1007/s13233-021-9101-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9101-9

Keywords

Navigation