Skip to main content
Log in

Enhanced Shear Thickening of Silica Colloidal Suspension Using Polystyrene-Polyacrylamide Particles

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Shear thickening (ST) refers to a non-Newtonian behavior of concentrated colloidal suspensions, which exhibits significant viscosity increments at high shear stress or high shear rate. A shear thickening fluid (STF) consists of well-dispersed solid particles in a liquid medium. Silica particles are often used as components of STFs due to the abundance of hydroxyl groups on their surfaces. Polystyrene core-polyacrylamide shell particles (PS-PAAm particles) were prepared to enhance the ST of silica particle-based colloidal suspensions. Addition of PS-PAAm particles to various particle weight fractions of silica particle-based STFs resulted in amplification of ST in all instances. These results suggest that PS-PAAm particles enhance inter-particle interactions due to the abundance of hydrogen-bonding donor groups in polyacrylamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Hoffman, T. Soc. Rheol., 16, 155 (1972).

    Article  CAS  Google Scholar 

  2. R. L. Hoffman, J. Colloid Interface Sci.. 46, 491, 1974.

    Article  CAS  Google Scholar 

  3. H. Barnes, J. Rheol., 33, 329 (1989).

    Article  CAS  Google Scholar 

  4. J. Bender and N. J. Wagner, J. Rheol., 40, 899 (1996).

    Article  CAS  Google Scholar 

  5. Y. S. Lee, E. D. Wetzel, and N. J. Wagner, J. Mater. Sci., 38, 2825 (2003).

    Article  CAS  Google Scholar 

  6. T. J. Kang, C. Y. Kim, and K. H. Hong, J. Appl. Polym. Sci., 124, 1534 (2012).

    Article  CAS  Google Scholar 

  7. A. Srivastava, A. Majumdar, and B. S. Butola, Mater. Sci. Eng., A, 529, 224 (2011).

    Article  CAS  Google Scholar 

  8. C. Fischer, S. Braun, P. Bourban, V. Michaud, C. Plummer, and J. E. Månson, Smart Mater. Struct., 15, 1467 (2006).

    Article  Google Scholar 

  9. X. Zhang, W. Li, and X. Gong, Smart Mater. Struct., 17, 035027 (2008).

    Article  Google Scholar 

  10. R. L. Hoffman, Adv. Colloid Interface Sci., 17, 161 (1982).

    Article  CAS  Google Scholar 

  11. H. Laun, R. Bung, S. Hess, W. Loose, O. Hess, K. Hahn, E. Hädicke, R. Hingmann, F. Schmidt, and P. Lindner, J. Rheol., 36, 743 (1992).

    Article  CAS  Google Scholar 

  12. N. J. Wagner and J. F. Brady, Phys. Today, 62, 27 (2009).

    Article  CAS  Google Scholar 

  13. J. F. Brady and G. Bossis, J. Fluid Mech., 155, 105 (1985).

    Article  Google Scholar 

  14. A. Kishbaugh and A. McHugh, Rheol. Acta, 32, 9 (1993).

    Article  CAS  Google Scholar 

  15. A. Kishbaugh and A. McHugh, Rheol. Acta, 32, 115 (1993).

    Article  CAS  Google Scholar 

  16. V. T. O’Brie and M. E. Mackay, Langmuir, 16, 7931 (2000).

    Article  Google Scholar 

  17. B. J. Maranzano and N. J. Wagner, J. Chem. Phys., 117, 10291 (2002).

    Article  CAS  Google Scholar 

  18. Y. S. Lee and N. J. Wagner, Ind. Eng. Chem. Res., 45, 7015 (2006).

    Article  CAS  Google Scholar 

  19. X. Cheng, J. H. McCoy, J. H. Israelachvili, and I. Cohen, Science, 333, 1276 (2011).

    Article  CAS  Google Scholar 

  20. A. Srivastava, A. Majumdar, and B. Butola, Crit. Rev. Solid State Mater. Sci., 37, 115 (2012).

    Article  CAS  Google Scholar 

  21. B.-W. Lee, I.-J. Kim, and C.-G. Kim, J. Compos. Mater., 43, 2679 (2009).

    Article  CAS  Google Scholar 

  22. S. Olhero and J. Ferreira, Power Technol., 139, 69 (2004).

    Article  CAS  Google Scholar 

  23. P.-S. Kang, J.-S. Lim, and C. Huh, J. Ind. Eng. Chem., 78, 257 (2019).

    Article  CAS  Google Scholar 

  24. H. Yang, S. Shao, T. Zhu, C. Chen, S. Liu, B. Zhou, X. Hou, Y. Zhang, and W. Kang, J. Ind. Eng. Chem., 79, 295 (2019).

    Article  CAS  Google Scholar 

  25. I. H. Park and H. J. Choi, J. Ind. Eng. Chem., 64, 102 (2018).

    Article  CAS  Google Scholar 

  26. S. Park, S. Choi, J. Song, E. Park, and T. Rho, Polym. Korea, 43, 700 (2019).

    Article  CAS  Google Scholar 

  27. S. Li, J. Wang, S. Zhao, W. Cai, Z. Wang, and S. Wang, J. Mater. Res. Technol., 33, 261 (2017).

    Google Scholar 

  28. S.-B. Zheng, S.-H. Xuan, W.-Q. Jiang, and X.-L. Gong, Smart Mater. Struct., 24, 085033 (2015).

    Article  Google Scholar 

  29. X. Sha, K. Yu, H. Cao, and K. Qian, J. Nanopart. Res., 15, 1816 (2013).

    Article  Google Scholar 

  30. M. Liu, W. Jiang, Q. Chen, S. Wang, Y. Mao, X. Gong, K.-F. Leung, J. Tian, H. Wang, and S. Xuan, RSC Adv., 6, 29279 (2016).

    Article  CAS  Google Scholar 

  31. Q. Chen, M. Liu, S. Xuan, W. Jiang, S. Cao, and X. Gong, Mater. Des., 121, 92 (2017).

    Article  CAS  Google Scholar 

  32. S. Li, Y. Wang, J. Ding, H. Wu, and Y. Fu, Text. Res. J., 84, 897 (2014).

    Article  CAS  Google Scholar 

  33. H. S. Son, K. H. Kim, J. H. Song, W. Lee, J. H. Kim, K. H. Yoon, Y. S. Lee, and H.-J. Paik, Colloid Polym. Sci., 297, 95 (2019).

    Article  CAS  Google Scholar 

  34. H. S. Son, K. H. Kim, J. H. Kim, K. H. Yoon, Y. S. Lee, and H.-J. Paik, Colloid Polym. Sci., 296, 1591 (2018).

    Article  CAS  Google Scholar 

  35. M. E. Dobrowolska, J. H. van Esch, and G. J. Koper, Langmuir, 29, 11724 (2013).

    Article  CAS  Google Scholar 

  36. E. Brown, N. A. Forman, C. S. Orellana, H. Zhang, B. W. Maynor, D. E. Betts, J. M. DeSimone, and H. M. Jaeger, Nat. Mater., 9, 220 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Sil Lee or Hyun-jong Paik.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by the Industrial Strategic Technology Development Program (No. 10063082/10070127) funded by the Ministry of Trade, Industry and Energy of Korea. This is also supported by the Agency for Defense Development of Korea (No. ADD-15-210-502-026). Research has been performed as a cooperation project of “The development of Sustainable materials technology for Eco-Automobile” supported by the Korea Research Institute of Chemical Technology. Assistance in XPS analysis from Korea Basic Science Institute Busan Center is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, H.S., Kim, K.H., Lee, E.H. et al. Enhanced Shear Thickening of Silica Colloidal Suspension Using Polystyrene-Polyacrylamide Particles. Macromol. Res. 28, 523–529 (2020). https://doi.org/10.1007/s13233-020-8069-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8069-1

Keywords

Navigation