Skip to main content
Log in

Fabrication of Aminosilanized Halloysite Based Floating Biopolymer Composites for Sustained Gastro Retentive Release of Curcumin

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Being poor solubility and degradation at relatively higher pH present in the small intestine, it is very essential to develop gastro-retentive dosages for the release of curcumin. In this paper, the halloysite nanotubes (HNTs) was modified with aminopropyl trimethoxy silane (APTES) in order to increase the buoyancy of the hybrid beads through holding CO2 molecules within the pores of the beads, followed by the encapsulation of curcumin into the lumen of the HNTs. Highly porous pectin based hybrid beads were fabricated by incorporating various compositions of curcumin loaded amino silanized halloysite nanotube (MHNT) and sodium bicarbonate as CO2 generating agent. Finally, hybrid beads were crosslinked by ionotropic gelation method using calcium chloride and used to gastro retentive delivery of curcumin in sustained manner. The amino salinization of halloysite and curcumin loading into the modified halloysite were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The highly porous nature of cross-linked hybrid beads has been confirmed with scanning electron microscopy (SEM) studies. In vitro release studies in simulated gastric fluid indicate that these new hybrid floating carriers are suitable for gastro retentive controlled release applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. S. Reddy, K. M. Rao, K. S. V. Rao, Y. Shchipunov, and C.–S. Ha, Macromol. Res., 22, 832 (2014).

    Article  CAS  Google Scholar 

  2. H.–J. Hong, J. Kim, Y. J. Suh, D. Kim, K.–M. Roh, and I. Kang, Macromol. Res., 25, 1145 (2017).

    Article  CAS  Google Scholar 

  3. C. Bothiraja, V. Kumbhar, A. Pawar, K. Shaikh, and R. Kamble, RSC Adv., 5, 28848 (2015).

    Article  CAS  Google Scholar 

  4. E. Deshommes, R. Tardif, M. Edwards, and S. Sauve, Chem. Cent. J., 6, 138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. V. Joshi, B. D. Kevadiya, H. M. Mody, and H. C. Bajaj, J. Polym. Sci., Part A: Polym. Chem., 50, 423 (2012).

    Article  CAS  Google Scholar 

  6. L. Shen, C.–C. Liu, C.–Y. An, and H.–F. Ji, Sci. Rep., 6, 20872 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Mahkam, N. Poorgholy, and L. Vakhshouri, Macromol. Res., 17, 709 (2009).

    Article  CAS  Google Scholar 

  8. J. Ravindran, S. Prasad, and B. B. Aggarwal, AAPS J., 11, 495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Bazzano, R. Pisano, J. Brelstaff, M. G. Spillantini, M. Sidryk–Wegrzynowicz, G. Rizza, and M. Sangermano, J. Polym. Sci., Part A: Polym. Chem., 54, 3357 (2016).

    Article  CAS  Google Scholar 

  10. E. Abdullayev and Y. Lvov, J. Mater. Chem. B, 1, 2894 (2013).

    Article  CAS  Google Scholar 

  11. M. Liu, Y. Zhang, C. Wu, S. Xiong, and C. Zhou, Int. J. Biol. Macromol., 51, 566 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. S. Jana, S. Das, C. Ghosh, A. Maity, and M. Pradhan, Sci. Rep., 5, 8711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Liu, Y. Chang, J. Yang, Y. You, R. He, T. Chen, and C. Zhou, J. Mater. Chem. B, 4, 2253 (2016).

    Article  CAS  Google Scholar 

  14. M. Massaro, S. Riela, P. L. Meo, R. Noto, G. Cavallaro, S. Milioto, and G. Lazzara, J. Mater. Chem. B, 2, 7732 (2014).

    Article  CAS  Google Scholar 

  15. G. Cavallaro, G. Lazzara, M. Massaro, S. Milioto, R. Noto, F. Parisi, and S. Riela, J. Phys. Chem. C, 119, 8944 (2015).

    Article  CAS  Google Scholar 

  16. K. M. Rao, S. Nagappan, D. J. Seo, and C.–S. Ha, Appl. Clay Sci., 97, 33 (2014).

    Article  CAS  Google Scholar 

  17. L. Liu, M. L. Fishman, and K. B. Hicks, Cellulose, 14, 15 (2007).

    Article  CAS  Google Scholar 

  18. Y. M. Lvov, D. G. Shchukin, H. Möhwald, and R. R. Price, ACS Nano, 2, 814 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. I. Braccini and S. Pérez, Biomacromolecules, 2, 1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. H. Power, M. Karde, N. Mundle, P. Jadav, and K. Mehra, Med. Chem., 4, 588 (2014).

    Google Scholar 

  21. E. Abdullayev, A. Joshi, W. Wei, Y. Zhao, and Y. Lvov, ACS Nano, 6, 7216 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. K. Tazaki, Clays Clay Miner., 53, 224 (2005).

    Article  CAS  Google Scholar 

  23. W. O. Yah, A. Takahara, and Y. M. Lvov, J. Am. Chem. Soc., 134, 1853 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildoo Chung.

Additional information

Acknowledgments: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B04032465), and by the 2016 Post-Doc. Development Program of Pusan National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siva Gangi Reddy, N., Madhusudana Rao, K., Park, S.Y. et al. Fabrication of Aminosilanized Halloysite Based Floating Biopolymer Composites for Sustained Gastro Retentive Release of Curcumin. Macromol. Res. 27, 490–496 (2019). https://doi.org/10.1007/s13233-019-7062-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7062-z

Keywords

Navigation