Skip to main content

Advertisement

Log in

Fabrication of hesperidin self-micro-emulsifying nutraceutical delivery system embedded in sodium alginate beads to elicit gastric stability

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poor bioavailability of hesperidin (HES) due to its gastric instability and low aqueous solubility limits its clinical application. The objective of presented work was to incorporate self-microemulsifying drug delivery system of HES (SMEDDS-HES) into alginate beads. The alginate beads were characterized for their size and morphology by using motic microscopy and scanning electron microscopy. The selected beads formulation (BF 7) revealed particle size (1.3 ± 0.117 mm), entrapment efficiency (87.4 ± 2.2%), circularity (0.9987), aspect ratio (0.9950), and swelling index (81.75 ± 2.14%). The encapsulation of HES in beads was assured by Fourier transform infrared spectroscopy study. The in vitro drug release kinetic of beads was performed in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The results revealed negligible release of HES (3.52 ± 0.8%) from beads in SGF after 2 h, and in SIF (after 8 h), the beads showed burst release (72.52 ± 3.5%) of HES. Antidiabetic and histopathological studies on experimental rat revealed promising hypoglycemic activity of beads which sought for its ability to protect HES in the stomach. The shelf life of optimized bead formulation was estimated 1079 days suggesting excellent stability of HES after encapsulation. Finally, developed beads formulation was considered a promising approach in oral delivery of HES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Das L, Bhaumik E, Raychaudhuri U, Chakraborty R (2012) Role of nutraceuticals in human health. J Food Sci Technol 49:173–183. https://doi.org/10.1007/s13197-011-0269-4

    Article  CAS  PubMed  Google Scholar 

  2. Gul K, Singh AK, Jabeen R (2016) Nutraceuticals and functional foods: the foods for the future world. Crit Rev Food Sci Nutr 56:2617–2627. https://doi.org/10.1080/10408398.2014.903384

    Article  CAS  PubMed  Google Scholar 

  3. Nasri H (2012) Comment on: serum cholesterol and LDL-C in association with level of diastolic blood pressure in type 2 diabetic patients. J Ren Inj Prev 1:13–134. https://doi.org/10.12861/jrip.2012.06

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tsirigotis-Maniecka M, Gancarz R, Wilk KA (2017) Polysaccharide hydrogel particles for enhanced delivery of hesperidin: fabrication, characterization and in vitro evaluation. Colloids Surf A Physicochem Eng Asp 532:48–56. https://doi.org/10.1016/j.colsurfa.2017.07.001

    Article  CAS  Google Scholar 

  5. Ali SH, Sulaiman GM, Al-Halbosiy MMF et al (2019) Fabrication of hesperidin nanoparticles loaded by poly lactic co-Glycolic acid for improved therapeutic efficiency and cytotoxicity. Artif Cells Nanomed Biotechnol 47:378–394. https://doi.org/10.1080/21691401.2018.1559175

    Article  CAS  PubMed  Google Scholar 

  6. Stanisic D, Costa FA, Favaro WJ et al (2018) Anticancer activities of hesperidin and hesperetin in vivo and their potentiality against bladder cancer. J Nanomed Nanotechnol. https://doi.org/10.4172/2157-7439.1000515

    Article  Google Scholar 

  7. Majumdar S, Srirangam R (2009) Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: a natural bioflavonoid. Pharm Res 26:1217–1225. https://doi.org/10.1007/s11095-008-9729-6

    Article  CAS  PubMed  Google Scholar 

  8. Yang HL, Chen SC, Senthil Kumar KJ et al (2012) Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem 60:522–532. https://doi.org/10.1021/jf2040675

    Article  CAS  PubMed  Google Scholar 

  9. Akiyama S, Katsumata S, Suzuki K et al (2009) Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes with type 2 diabetes. Biosci Biotechnol Biochem 73:2779–2782. https://doi.org/10.1271/bbb.90576

    Article  CAS  PubMed  Google Scholar 

  10. Garg A, Garg S, Zaneveld LJD, Singla AK (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phyther Res 15:655–669. https://doi.org/10.1002/ptr.1074

    Article  CAS  Google Scholar 

  11. Bok S-H, Lee S-H, Park Y-B et al (1999) Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. J Nutr 129:1182–1185. https://doi.org/10.1093/jn/129.6.1182

    Article  CAS  PubMed  Google Scholar 

  12. Yamada M, Tanabe F, Arai N et al (2006) Bioavailability of glucosyl hesperidin in rats. Biosci Biotechnol Biochem 70:1386–1394. https://doi.org/10.1271/bbb.50657

    Article  CAS  PubMed  Google Scholar 

  13. Sansone F, Rossi A, Gaudio P et al (2009) Hesperidin gastroresistant microparticles by spray-drying: preparation, characterization, and dissolution profiles. AAPS PharmSciTech 10:391–401. https://doi.org/10.1208/s12249-009-9219-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dangre P, Gilhotra R, Dhole S (2016) Formulation and statistical optimization of self-microemulsifying drug delivery system of eprosartan mesylate for improvement of oral bioavailability. Drug Deliv Transl Res 6:610–621. https://doi.org/10.1007/s13346-016-0318-7

    Article  CAS  PubMed  Google Scholar 

  15. Dokania S, Joshi AK (2015) Self-microemulsifying drug delivery system (SMEDDS)-challenges and road ahead. Drug Deliv 22:675–690. https://doi.org/10.3109/10717544.2014.896058

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Bai Y, Chen H et al (2017) Preparation of a colon-specific sustained-release capsule with curcumin-loaded SMEDDS alginate beads. RSC Adv 7:22280–22285. https://doi.org/10.1039/c6ra27693h

    Article  CAS  Google Scholar 

  17. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14. https://doi.org/10.1016/j.jconrel.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  18. Balanč B, Trifković K, Đorđević V et al (2016) Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocoll 61:832–842. https://doi.org/10.1016/j.foodhyd.2016.07.005

    Article  CAS  Google Scholar 

  19. Zhang P, Liu Y, Feng N, Xu J (2008) Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int J Pharm 355:269–276. https://doi.org/10.1016/j.ijpharm.2007.12.026

    Article  CAS  PubMed  Google Scholar 

  20. Milović M, Djuriš J, Djekić L et al (2012) Characterization and evaluation of solid self-microemulsifying drug delivery systems with porous carriers as systems for improved carbamazepine release. Int J Pharm 436:58–65. https://doi.org/10.1016/j.ijpharm.2012.06.032

    Article  CAS  PubMed  Google Scholar 

  21. Umaredkar AA, Dangre PV, Mahapatra DK, Dhabarde DM (2018) Fabrication of chitosan-alginate polyelectrolyte complexed hydrogel for controlled release of cilnidipine: a statistical design approach. Mater Technol 7857:1–11. https://doi.org/10.1080/10667857.2018.1456617

    Article  CAS  Google Scholar 

  22. Sonawane RO, Patil SD (2018) Fabrication and statistical optimization of starch-κ-carrageenan cross-linked hydrogel composite for extended release pellets of zaltoprofen. Int J Biol Macromol 120:2324–2334. https://doi.org/10.1016/j.ijbiomac.2018.08.177

    Article  CAS  PubMed  Google Scholar 

  23. Sookkasem A, Chatpun S, Yuenyongsawad S, Wiwattanapatapee R (2015) Alginate beads for colon specific delivery of self-emulsifying curcumin. J Drug Deliv Sci Technol 29:159–166. https://doi.org/10.1016/j.jddst.2015.07.005

    Article  CAS  Google Scholar 

  24. Bera H, Kandukuri SG, Nayak AK, Boddupalli S (2015) Alginate-sterculia gum gel-coated oil-entrapped alginate beads for gastroretentive risperidone delivery. Carbohydr Polym 120:74–84. https://doi.org/10.1016/j.carbpol.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  25. Gandhi GR, Sasikumar P (2012) Antidiabetic effect of Merremia emarginata Burm. F. in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed 2:281–286. https://doi.org/10.1016/S2221-1691(12)60023-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garg V, Kaur P, Singh SK et al (2017) Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. Eur J Pharm Sci 109:297–315. https://doi.org/10.1016/j.ejps.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  27. Arunachalam K, Parimelazhagan T (2013) Antidiabetic activity of Ficus amplissima Smith. bark extract in streptozotocin induced diabetic rats. J Ethnopharmacol 147:302–310. https://doi.org/10.1016/j.jep.2013.03.004

    Article  PubMed  Google Scholar 

  28. Aji Alex MR, Chacko AJ, Jose S, Souto EB (2011) Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci 42:11–18. https://doi.org/10.1016/j.ejps.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  29. Chaudhary H, Gauri S, Rathee P, Kumar V (2013) Development and optimization of fast dissolving oro-dispersible films of granisetron HCl using Box-Behnken statistical design. Bull Fac Pharmacy Cairo Univ 51:193–201. https://doi.org/10.1016/j.bfopcu.2013.05.002

    Article  Google Scholar 

  30. Dangre P, Dudhkohar S, Chalikwar S (2020) Development of alginate-neusilin US2 (magnesium alumino-metasilicate) micro-composite hydrogel beads for oral sustained release of cilnidipine: a statistical optimization. Polym Technol Mater 59:169–183. https://doi.org/10.1080/25740881.2019.1625391

    Article  CAS  Google Scholar 

  31. Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2005) Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling. AAPS PharmSciTech 6:209–222. https://doi.org/10.1208/pt060231

    Article  Google Scholar 

  32. Mallappa MK, Kesarla R, Banakar S (2015) Calcium alginate-neusilin US2 nanocomposite microbeads for oral sustained drug delivery of poor water soluble drug aceclofenac sodium. J Drug Deliv 2015:1–14. https://doi.org/10.1155/2015/826981

    Article  Google Scholar 

  33. Sarkar K, Ansari Z, Sen K (2016) Detoxification of Hg(II) from aqueous and enzyme media: pristine vs. tailored calcium alginate hydrogels. Int J Biol Macromol 91:165–173. https://doi.org/10.1016/j.ijbiomac.2016.05.049

    Article  CAS  PubMed  Google Scholar 

  34. Dangre PV, Gilhotra RM, Dhole SN (2016) Formulation and development of solid self micro-emulsifying drug delivery system (S-SMEDDS) containing chlorthalidone for improvement of dissolution. J Pharm Investig 46:633–644. https://doi.org/10.1007/s40005-016-0243-2

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We sincerely thank the Gattefosse Pvt. Ltd for providing a gratis sample of oil and surfactant, and STIC (Sophisticated Test and Instrumentation Center), Cochin, India, to analyze samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh S. Chalikwar.

Ethics declarations

Conflicts of interest

The authors declare there is no competing interest in publishing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dangre, P.V., Dusad, P.P., Singh, A.D. et al. Fabrication of hesperidin self-micro-emulsifying nutraceutical delivery system embedded in sodium alginate beads to elicit gastric stability. Polym. Bull. 79, 605–626 (2022). https://doi.org/10.1007/s00289-020-03507-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03507-7

Keywords

Navigation