Skip to main content
Log in

Influence of Solution pH on Drug Release from Ionic Hydrogel Lens

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Hydrogel contact lenses have shown the possibility for uses in ophthalmological treatment for the last decades. Moreover, structural changes responsive to solution pH have given further applications toward more complicated drug delivery for physiological and pathological states of a wearer. However, unpredicted variables, swelling degree, and polymer degeneration, have been hurdles for the evaluation and quantification of a designed pharmaceutic system. Many scientists believe understanding empirical/semi-empirical mechanisms behind the drug release can offer simple solutions to quantify and furthermore control the drug release. In this study, we developed silicon-copolymerized hydrogel contact lenses with various functional monomers for delivery of hydroxypropyl methylcellulose, one of the commonly used dry eye drugs. Under the physiological pH, the prepared hydrogels showed different swelling reactions in response to ionic interaction. In addition, analysis of the pH sensitivity and maximum release amounts against the artificial tear pH suggested possible molecular changes in the functional groups and swelling behaviors. Accordingly, the mathematical parameters were calculated to better understand the drug release mechanism from hydrogels. By evaluating these parameters, the primary rate-limiting factors of the silicone hydrogel contact lenses were determined at the investigated pH. These results, with the simple mechanistic study, imply the potentials of silicone hydrogel contact lens in controlled drug delivery under the physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sedlavek, Cesk Oftalmol, 21, 509 (1965).

    Google Scholar 

  2. S. Gause, K.-H. Hsu, C. Shafor, P. Dixon, K. C. Powell, and A. Chauhan, Adv. Colloid Interface Sci., 233, 139 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. I. M. Carvalho, C. S. Marques, R. S. Oliveira, P. B. Coelho, P. C. Costa, and D. C. Ferreira, J. Control. Release, 202, 76 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. C. Alvarez-Lorenzo, H. Hiratani, L. Gómez-Amoza José, R. Martínez-Pacheco, C. Souto, and A. Concheiro, J. Pharm. Sci., 91, 2182 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. R. W. Baker, Controlled Release of Biologically Active Agents, John Wiley & Sons, New York, 1987.

    Google Scholar 

  6. H. J. Jung and A. Chauhan, Biomaterials, 33, 2289 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. C.-C. Peng, M. T. Burke, B. E. Carbia, C. Plummer, and A. Chauhan, J. Control. Release, 162, 152 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. C.-C. Peng, J. Kim, and A. Chauhan, Biomaterials, 31, 4032 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. D. Lee, S. Cho, H. S. Park, and I. Kwon, Sci. Rep, 6, 34194 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. R. Jain, Br. J. Ophthalmol., 72, 150 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. N. A. Peppas, Curr. Opin. Colloid Interface Sci., 2, 531 (1997).

    Article  CAS  Google Scholar 

  12. S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, Biomacromolecules, 4, 497 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. S. Brahim, D. Narinesingh, and A. Guiseppi-Elie, Biomacromolecules, 4, 1224 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. G. Kim, H. J. Kim, and H. Noh, Macromol. Res., 26, 278 (2018).

    Article  CAS  Google Scholar 

  15. J. Siepmann and F. Siepmann, J. Control. Release, 161, 351 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. J. Siepmann and F. Siepmann, Int. J. Pharm., 453, 12 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. J. Siepmann and F. Siepmann, Int. J. Pharm., 364, 328 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. J. Crank, London: Oxford Univ, 11 (1975).

    Google Scholar 

  19. T. Higuchi, J. Pharm. Sci., 50, 874 (1961).

    Article  CAS  PubMed  Google Scholar 

  20. E. Doelker, Hydrogels in Med. and Pharm., 2, 115 (1987).

    CAS  Google Scholar 

  21. H. Fujita, in Fortschritte Der Hochpolymeren-Forschung, Springer, 1961, pp 1–47.

    Google Scholar 

  22. N. Peppas, Pharmaceutica Acta Helvetiae, 60, 110 (1985).

    CAS  PubMed  Google Scholar 

  23. P. L. Ritger and N. A. Peppas, J. Control. Release, 5, 23 (1987).

    Article  CAS  Google Scholar 

  24. P. L. Ritger and N. A. Peppas, J. Control. Release, 5, 37 (1987).

    Article  CAS  Google Scholar 

  25. A. Göpferich and R. Langer, J. Control. Release, 33, 55 (1995).

    Article  Google Scholar 

  26. A. Göpferich, J. Control. Release, 44, 271 (1997).

    Article  Google Scholar 

  27. A. Göpferich and R. Langer, AlChE J., 41, 2292 (1995).

    Article  Google Scholar 

  28. P. Gupta, K. Vermani, and S. Garg, Drug Discov. Today, 7, 569 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. F. Naeem, S. Khan, A. Jalil, N. M. Ranjha, A. Riaz, M. S. Haider, S. Sarwar, F. Saher, and S. Afzal, BioImpacts, 7, 177 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Ali, S. Horikawa, S. Venkatesh, J. Saha, J. W. Hong, and M. E. Byrne, J. Control. Release, 124, 154 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. D. A. Loy, B. Mather, A. R. Straumanis, C. Baugher, D. A. Schneider, A. Sanchez, and K. J. Shea, Chem. Mater., 16, 2041 (2004).

    Article  CAS  Google Scholar 

  32. S. Ganguly and N. C. Das, RSC Adv., 5, 18312 (2015).

    Article  CAS  Google Scholar 

  33. M. Falamarzian and J. Varshosaz, Drug Dev. Ind. Pharm., 24, 667 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. S. Murdan, J. Control. Release, 92, 1 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. R. Langer and N. Peppas, J. Macromol. Sci. Polymer. Rev., 23, 61 (1983).

    Article  Google Scholar 

  36. N. Pritchard, D. Fonn, and D. Brazeau, Int. Cont. Lens Clin., 26, 157 (1999).

    Article  CAS  Google Scholar 

  37. G. Ahn, Y. Kim, S.-W. Lee, Y. J. Jeong, H. Son, and D. Lee, Macromol. Res., 22, 99 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeran Noh.

Additional information

Acknowledgments: This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20181510102130).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Kim, H.J. & Noh, H. Influence of Solution pH on Drug Release from Ionic Hydrogel Lens. Macromol. Res. 27, 191–197 (2019). https://doi.org/10.1007/s13233-019-7050-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7050-3

Keywords

Navigation